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Abstract

In this dissertation, different aspects of constrained layer damping treatments on beams

of various geometries are studied. First, the optimal length of a constrained layer damping

treatment mounted on a surface in linear strain is identified as a function of the relative stiffnesses

of the damping layers and the non-uniformity of the surface stain. The analysis extends previous

work that considered the case of uniform surface strain.

Sixth order sandwich beam theory is then modified for use with a rectangular beam

covered with a segmented constrained layer damping treatment. Non-dimensional variables are

used to simplify the form of the problem. Also, equations are developed for a beam of circular

cross section with thin narrow constrained layer strips placed parallel to the beam centerline, and

it is shown the equations have the same form as the sixth order theory for the rectangular beam.

A new approximation method, the "Complex Rayleigh Quotient", is proposed to estimate

the complex natural frequency and damping of structures. Complex mode shapes are used in a

ratio similar in spirit to Rayleigh's Quotient to obtain an estimate for the complex frequency of

the system. The method is defined for both discrete and continuous systems, and illustrated using

a rectangular beam with a segmented damping treatment. The estimates of loss factor developed

from the Complex Rayleigh Quotient were much closer to the exact solutions than those

developed using the Modal Strain Energy method.

A new constrained layer configuration, the"barberpole", is presented for beams of circular

cross section. An analysis is developed which show that the barberpole configuration can damp

both bending and torsional vibrations. The barberpole also provides more damping than

unsegmented strips for a beam in bending. An experiment was performed to gain confidence in

the bending portion of the barberpole analysis.
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DESIGN AND ANALYSIS OF CONSTRAINED LAYER

DAMPING TREATMENTS FOR BENDING AND TORSION

I. Introduction

Modem designers of aerospace structures continually attempt to gain greater

performance out of their hardware. For aircraft, reducing excess weight is often critical

to better performance, and for space systems, reducing weight is a top priority because

of the physical limitations of existing launch vehicles and the high cost per launch.

Unfortunately, attempts to reduce weight can often result in structures with reduced

stiffness and damping, making unwanted structural vibrations a major problem.

The problem of undesirable vibration has created extensive interest in the subject

of vibration suppression. There are two general approaches to vibration suppression.

Active damping or active control systems continually monitor the state of the structure,

detect any deviation from the desired behavior, and then apply an appropriate force to

correct the system motion. Passive damping methods attempt to augment the inherent

damping of the structure through some design to increase the dissipation of kinetic energy

into heat. Passive damping methods are attractive in many applications because of their

relative simplicity, low cost, low weight, and inherent stability. Because an increase in

the damping inherent in the structure may often make the task of active control easier,

passive damping methods may also be considered a supplement to active control.
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Viscoelastic coatings are often used as part of a passive damping treatment. A

viscoelastic material converts kinetic energy into heat when it undergoes mechanical

strain. There are two primary viscoelastic coating classifications. In the extensional or

unconstrained layer treatment, a viscoelastic coating is added to one or more surfaces of

an existing structure (Figure 1.1). Bending of the structure causes elongation or

compression of the viscoelastic layer and the energy dissipated is proportional to the axial

strain. The constrained layer treatment consists of one or more layers of viscoelastic

material sandwiched between layers of high extensional stiffness. Damping comes from

shear stress in the viscoelastic layers created by the relative deformation of the structural

elements (Figure 1.2). Periodic cuts in the constraining layer have been shown to

improve damping effectiveness (76:150, 46:41, 57:1678). From a mass optimization

standpoint, a constrained layer damping treatment is more efficient than the extensional

treatment, though the analysis is more complicated, especially if the constraining layer is

cut into segments.

VISCOELASTIC MATERIAL EXTENSIONAL STRAIN

STRUCTUREo

Figure 1.1. Viscoelastic Extensional Treatment
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CONdSTRAOMON LAYER VISCOGLASTIC MATBP$AL $ER$RI

STRUCTURE 
F OO

Figure 1.2. Viscoelastic Constrained Layer Treatment

The goal of this research is to investigate several different uses of constrained

layer damping treatments in the damping of beams of various geometries. A review of

existing literature is presented in Chapter 2. In Chapter 3, the impact of segmentation on

the effectiveness of constrained layer damping treatment is discussed. The optimal

length analysis of Plunkett and Lee is described, which identifies the optimal length of

a segment mounted on a substrate with uniform surface strain (76:150). The analysis is

extended for the case of linearly varying surface strain. The exact equations of motion

for a continuous constrained layer damping treatment on a rectangular beam are

developed in Chapter 4, then it is shown how these equations may be modified to include

the effects of segmentation. In Chapter 5, a method based on Rayleigh's Quotient that

uses complex mode shapes developed from the Correspondence Principle is used to

predict the natural frequency and loss factor of structures. The results from the new

method are compared with predictions from the Modal Strain Energy method and the

exact solutions, and it is shown that the approximation using complex modes provides a

much better estimate of the system damping than the Modal Strain Energy method. In

1.3



Chapter 6, a system of equations are developed for a beam of circular cross section with

constrained layer strips parallel to the beam neutral axis. It is shown that, if the damping

strips are thin and narrow, the equations collapse into a single 6th order equation similar

in form to the flat beam problem described in Chapter 4. In Chapter 7, the equations of

motion for both bending and torsion are developed for a beam of circular cross section

with a damping treatment consisting of thin, narrow constrained layer strips oriented in

a helical or "barberpole" configuration. The analysis shows that the barberpole

configuration has the capability to damp both bending and torsional vibrations. In

Chapter 8, results of an experiment performed to gain confidence in the bending portion

of the barberpole theory are reported. Chapter 9 contains a summary of the dissertation

research and the conclusions reached in the earlier chapters.
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II. Literature Review: Analysis of Constrained Layer Damping

A great deal of research has been published on the use of damping materials to

control structural vibration. There are several reviews of various aspects of the field,

including those by Nakra in 1977 (65:3) and 1981 (66:17), by Nelson in 1977 (69:3), by

Torvik in 1980 (94:85), and by Yu in 1989 (106:1).

This chapter addresses previous work in constrained layer damping that is directly

related to the goals of this research. These topics include some of the early work on

constrained layer damping, the expansion of the theory to include higher order effects and

non-pinned boundary conditions, the effects of partial coverage and segmentation, the

application of constrained layer theory to generalized or circular cross sections, and the

design of composites to use constrained layer concepts as an integral part of the structure.

Because finite elements are not used in this research, papers that use this method for

analysis have not been singled out as a special group, but it should be noted that finite

element methods are being used extensively in the investigation of various viscoelastic

problems (30:792, 33:203, 34:71, 35:1284, 47:199). Though most of the research

described in this chapter involves constrained layer damping treatments, some relevant

work associated with generalized damped systems is also discussed.
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Early Constrained Layer Analysis of Rectangular Beams

The analysis of the damping effects of constrained viscoelastic layers first

blossomed in the late 1950's. Though some form of the problem was addressed by earlier

researchers (72:48, 99), a series of papers by E. M. Kerwin, D. Ross, and E. F. Ungar

served as a stimulus for research in the analysis, testing and application of constrained

layer damping treatments. A review by Kerwin published in 1965 (37) describes much

of the early work in this area. In general, the early work assumes the beam mode shapes

are sinusoidal and considers forces in the damping treatment that act in a direction

parallel to the neutral axis of the beam. These assumptions allowed the authors to

develop closed form expressions for the loss factor.

In the 1959 paper "Damping of Flexural Waves by a Constrained Viscoelastic

Layer" (36:952), Kerwin analyzed a constrained layer treatment on a plate and attributed

the energy dissipation to shear induced in the viscoelastic layer. A complex shear

modulus was assigned to the viscoelastic material, then an expression for the loss factor

for the composite structure was developed from the structure's complex bending stiffness.

A subsequent report by Ross, Ungar, and Kerwin (79:49) elaborated on the theory. The

report included an analysis for multiple constraining layer configurations and the use of

rigid spacers to improve the efficiency of damping treatments. In a later paper, Ungar

and Kerwin defined expressions for a system loss factor using energy methods (97:954).

Unlike some of the earlier work in the field, their definition for loss factor is valid for

heavily damped systems with out of phase deformations.
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Higher Order Effects

Effect of Boundary Conditions. The Ross, Ungar, Kerwin analysis (and most of the

papers that soon followed) assumed that all layers of the sandwich beam or plate moved

with the same sinusoidal mode shape. DiTaranto developed a general 6th order equation

in the longitudinal displacement that could be used with more general boundary

conditions (17:881). He noted that the relationship between the loss factor and the

frequency of vibration was independent of the boundary conditions as long as no energy

is dissipated at the boundaries. Mead and Markus developed a 6th order equation in

terms of the transverse displacement of the beam (59:163, 60:99). In the later paper,

they considered the roots of the resulting characteristic equation and stated that the roots

will be complex for other than simply supported boundary conditions. They reported that

the frequency where the loss factor achieves its maximum is sensitive to boundary

conditions, but the magnitude of this maximum does not vary significantly (60:111).

These papers by DiTaranto and Mead and Markus retained the assumption that the

relative spacing between beam and constraining layer is maintained throughout the

deformation.

Lu and Douglas compared the Mead and Markus theory with experimental data

(46:513). DiTaranto and Blasingame used DiTaranto's 6th order theory to investigate the

influence of different boundary conditions and to identify some general design guidelines

(18:633). D. K. Rao developed exact solutions for the 6th order theory for several

boundary conditions (76:271). Cottle extended the 6th order theory to allow the

individual elastic layers to have different boundary conditions (14).
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Higher Order Inertia and Shear Effects. Other researchers have investigated higher order

effects in sandwich beams. Yu developed equations using a variational approach for

symmetric beams, including higher order inertial effects (105:790). Yan and Dowell

developed an analysis for the sandwich beam which included longitudinal inertia, rotatory

inertia, and shear strain in the beam and constraining layer (101:1041). In their analysis

it was assumed that the shear stress in both the core and the face plates was uniform

through their respective thicknesses, although not of the same value. They then

considered a simplified form of their equation, neglecting several higher order effects.

Their analysis results in a 4th order equation.

Mead (56:363) compared the 4th order equation from the Yan and Dowell analysis

with the 6th order equation of DiTaranto (17:881), Mead and Markus (59:163) and others.

Mead derived a more accurate analysis for a symmetric sandwich plate which includes

higher order effects such as longitudinal inertia and face-plate shear deformation. He

reported that the Yan and Dowell analysis agrees with the higher order analysis over a

broad wavelength range for stiff, thick cores, but agrees over a narrower range for thin

soft cores. Mead found that the 6th order analysis agrees with the higher order theory for

all core thicknesses over a much wider wavelength range. For most viscoelastic damping

applications, he concluded that the 6th order equations should be more accurate than the

Yan and Dowell analysis as long as the flexural wavelengths are at least four times the

thickness of the thickest face-plate.

Nakra and Grootenhuis developed equations that included the extensional effects

of the viscoelastic layer in the longitudinal direction and stated that this effect is
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significant for thick, stiff cores at low resonant frequencies (67:225). They used a

correction factor in the formulation to account for the non-uniform shear stress though the

thickness of the viscoelastic layer.

Y. V. K. S. Rao and Nakra included the effects of longitudinal inertia and shear

deformation of the face plates of a sandwich beam (77:309). They stated that longitudinal

inertia does not significantly affect the transverse displacement of the beam or plate, but

can significantly affect the longitudinal strain response at higher frequencies. In a later

paper, D. K. Rao performed an analysis of a short sandwich beam which included the

inertia, shear, and extension of all layers (75:253). He compared the results of this higher

order theory with earlier theories and then commented on the validity of these theories

for different configurations. Markus (52:593) used D. K. Rao's analysis to show that

incorporation of the higher order effects reduces the calculated loss factor from what is

predicted by the Ross-Ungar-Kerwin theory.

Compressional Effects in the Viscoelastic Layer. In the previous research discussed, the

authors assumed that the individual layers of the composite beam moved with the same

transverse motion and neglected the effects of compressional deformation in the

viscoelastic layer. The damping from such deformations may become significant in thick

cores, and investigations of these effects began in the mid 1970's. Douglas and Yang

modelled a constrained layer treatment as two separate beams coupled by a complex

extensional spring (22:925). They concluded that compressional damping can provide

significant vibration suppression at frequencies near the delamination frequency of the
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composite beam, but provides little attenuation elsewhere. The delamination frequency

is defined as the natural frequency of the composite beam at which the beam and

constraining layer tend to separate from each other. Douglas later extended the

compressional damping analysis to include rotatory inertia and shear deformation in the

face plates of a short thick beam (21:343). Neither paper included the effects of shear

damping in the viscoelastic layer.

In 1986 Miles and Reinhall extended the 6th order equations of DiTaranto and

Mead and Markus to include the effects of longitudinal inertia and thickness deformation

in the viscoelastic layer (63:56). Four coupled equations of motion in the transverse

displacement and longitudinal displacement variables for the two face plates were

developed using Hamilton's principle. These equations reduce to the earlier 6th order

expression if longitudinal inertia is neglected and the transverse deformations of the two

face plates are equated. One significant advantage of this extended formulation is that

the actual end conditions of the constraining layer may be modelled. In practice, the

constrained layer treatment is usually added on to an existing structure. The constraining

layer often has free-free boundary conditions that do not firmly attaz' it to the primary

beam, a situation which is not accurately modelled by the 6th order theory if the core is

soft. Miles and Reinhall solved the equations numerically by using a Ritz method.

Other work has considered both compression and shear damping effects, including

the analysis of sandwich beams by Sylwan (92:35), the investigation -f an adhesive joint

coupling two beams by Saito and Tani (81:229), ,nd Yp.dagiri and others (100:445).
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Analysis of Isotropic Flat Layered Plates. Though many of the early papers discussed

damping of plates and beams, the "plate" analysis was limited to bending in one plane.

Such plates can be considered beams that are wide enough to exhibit plane strain.

Extensions of beam theory to the thin flat three-layer (i.e., "sandwich") plate with bending

in two dimensions began in the late 1960's. In 1969 DiTaranto and McGraw developed

the equations of motion for a freely vibrating three-layer plate, and solved the problem

for simply supported boundary conditions (20:1081). Abdulhadi used the DiTaranto-

McGraw analysis to determine the forced response of simply supported three-layer plates

(1:93); and Durocher and Solecki extended the Yan and Dowell beam analysis to a plate

(23:105). J. F. He and B. A. Ma (31:237) developed simplified equations for an

unsymmetrical sandwich beam that neglects bending-extensional coupling, then solved

them using an asymptotic approach. Several researchers have used finite element methods

to analyze the viscoelastic sandwich plate configuration (30:792, 33:251, 34:71, 35:1284,

47:199, 48:63, 78: 467).

Segmentation, Partial Coverage, and Optimal Design of Damping Treatments

Several researchers have investigated the effects of using constrained layer

damping treatments that only partially cover the beam or plate to be damped, including

Nokes and Nelson (70:5), Markus (52:179), Grootenhuis (28:421), and Sylwan (107:219).

Others have noted that the effectiveness of a constrained layer damping treatment can be

improved oy judicious segmentation of the constraining layer, including Plunkett and Lee

(73:150), Kress (42:41), Alberts and others (3:274), Mantena and others (51:1678), and
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Sattinger (84: HBA). Sandman considered the effects of segmenting the viscoelastic coa

of a sandwich beam (82:897).

Segmentation of Constraining Layers. One of the first analyses of the effects of

segmentation of constrained layer damping treatments was presented by Parfitt at the

Fourth International Congress on Acoustics in Copenhagen in 1962 (71:1). Parfitt's

segmentation analysis was an extension of Kerwin's earlier work, with similar

assumptions. In the analysis it was assumed that the base structure experiences sinusoidal

bending and that the constrained layer damping treatment does not affect the strain

configuration of the base structure. The loss factor of the viscoelastic layer is assumed

to be small, and only the real part of the viscoelastic shear modulus is used when solving

the Kerwin equation for shear in the viscoelastic layer. Parfitt showed that segmentation

of the damping treatment improved its effectiveness, and that there exists an optimum

length that produces a maximum loss factor:

- 3.28 Re[ G,'] (2.1)
4 ' (2h•)(2h,) Ec

In Equation (2.1) 2h, and 2h, are the thicknesses of the viscoelastic and constraining

layer, Re[G,*] is the real part of the complex viscoelastic shear modulus, and E, is the

constraining layer elastic modulus.

In the same year Parfitt presented his work, a paper on the effectiveness of partial

coverage was presented by Pulgrano at the 64th Meeting of the Acoustical Society of

America (74:1976). Only an abstract of Pulgrano's work is currently available. In a later
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paper, Zeinetdinova and others experimentally confirmed that segmentation of the

constraining layer significantly improved the system loss factor even when Parfiltt's

assumptions of a thin damping treatment and small viscoelastic loss factor were not

satisfied (107:347). They reported that for the thick cores tested with loss factors of .5,

the multiplier for optimal segment length is somewhere between three and four, which is

consistent with the value of 3.28 identified by Parfitt.

Parfitt's work was later cited and expanded upon by Plunkett and Lee in a 1970

paper published in the Journal of the Acoustical Society of America (73:150). Plunkett

and Lee analyzed a constraining layer mounted on a substrate experiencing uniform strain,

and developed an expression for optimal length similar to that of Parfitt:

L O 3.28 g - IG;1 (2.2)
49 (2h)(2h.) Ec

Unlike Parfitt, Plunkett and Lee did not limit their analysis to the case where the

viscoelastic loss factor is small, and their expression contains the absolute value of the

shear modulus. Plunkett and Lee also considered the case of multiple layers of constrained

layer damping treatment on a beam. This work was extended by Torvik and Strickland

in their analysis of multiple segmented layer damping treatments for plates (95: 985).

Alberts, Chen, and Xia used the optimal length defined by Plunkett and Lee to

investigate segmentation of constrained layer damping treatments (3:274). They used

Equation (2.2) to design optimal damping treatments for the first and fourth modes, then

used the Modal Strain Energy approach with the MSC/NASTRAN finite element package

to find the resulting response for beams with the optimal damping treatments. Their
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analysis indicated that the loss factor from a properly segmented constraining layer could

be as much as seventeen times larger than the loss factor from the same constraining layer

without cuts. They also stated that the most significant factor in the predictive accuracy

of any optimal length analysis that assumes linear material properties is correct

viscoelastic material data. Because higher strains are developed in the layer using an

optimal length treatment, it is critical that the viscoelastic properties used in the linear

analysis are determined in tests performed at similar strain amplitudes.

In 1987 Kress investigated the segmentation problem and produced an optimal

length "handformula" similar to that developed by Parfitt and Plunkett and Lee, but

including the extensional stiffness of the base layer (42:41). Kress also developed a more

accurate implicit formula for optimal length which must be solved using an iterative

approach. He compared these different approaches with the results of a transfer matrix

analysis which modelled the main beam and constraining layer as Bernoulli-Euler beams,

and assumed the viscoelastic layer was in a state of plane stress. Kress reported that the

predictions of optimal length obtained from the implicit formula agreed with the those

from the transfer matrix analysis. Kress' handformula showed an +11 percent discrepancy,

and the Plunkett and Lee equation showed a -13% to +17% discrepancy, depending on

the value of G, used in the formula.

Kerwin and Smith considered the effects of segmentation on damping treatments

for extensional waves ( 38:KK' ). They noted that the optimal segment length for

'This reference is from a collection of papers; the letter designator "KK" is used instead of a page

number to identify the reference.
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extensional treatments was essentially the same as for the bending problem, but the loss

factors for extensional treatments were in general three times less than similar flexural

treatments because of the higher percentage of strain energy seen in the main beam during

extensional deformation.

Partial Coverage. In 1968, Nokes and Nelson showed that partial coverage of

constrained layers gives a better system loss factor than full coverage (70:5) for some

constrained layer configurations. This effect had been observed earlier in experiments by

Yoos and Nelson (104:1). The Nokes and Nelson analysis was based on the Ross, Ungar

and Kerwin assumptions, including that the mode shapes of the beam are unaffected by

the damping treatment. Their development assumes that the constrained layer is centered

on the beam and their results may be applied for any symmetric beam mode. The authors

identified a parameter R as a measure of the coupling between structure and constraining

layer:

R=G*L 2 [( + Y (2.3)
2hR [2hcEe 2 hbA

where 2h,, 2h€, and 2 hb are the thicknesses of the viscoelastic layer, constraining layer,

and beam. If the beam to be damped is much thicker than the constraining layer, R is

equivalent to the term gL2 used in the Plunkett and Lee analysis. For small R, the

damping decreases continuously as coverage is decreased. For larger R, the stiff

viscoelastic layer extends the compliant constraining layer and the shear strain in the

viscoelastic layer is concentrated at the edges of the damping treatment. This is clearly

2.11



a suboptimal application of viscoelastic material, and the authors found that as R

increases, the loss factor is maximized with a treatment that covers a decreasing

percentage of the beam.

Mantena, Gibson, and Hwang experimented with partial constrained layer coverage

of composite cantilever beams and compared their results with predictions from a finite

element model (51:1678). They reported increases in loss factor with partial coverage and

explored the effects of different boundary conditions on the loss factor.

Lall, Asnani, and Nakra compared three formulations of the partial beam problem

(43:247). In the fir'st method the modal loss factor is assumed proportional to the ratio

of the energy dissipated to the maximum strain energy during a cycle of harmonic motion,

where the modes are assumed to be those of the undamped beam. The second method

was based on a Rayleigh-Ritz approach, which yields natural frequencies as well as loss

factors. The third formulation was based on a classical-cum-search method, where the

exact equations of the Bernoulli-Euler beam and sandwich beam theory are solved with

continuity conditions for displacement, slope, moment, and shear force at the beam

interfaces. For an arbitrarily located constraining layer patch, the continuity conditions

provide a 14th order system of linear homogeneous equations from which the complex

natural frequency and resulting loss factor can be found.

Other Optimal Design Efforts for Viscoelastic Damping Treatments: Several researchers

have sought an optimal design for constrained layer damping treatments by tailoring the

material properties and thicknesses of elastic and viscoelastic layers, but leaving them
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unsegmented. Mead and DiTaranto considered the optimal design of a simply supported

three layer beam, and reported that displacement, velocity, acceleration, and stress were

minimized for the sandwich beam with elastic plates of approximately equal magnitude

(58:174). Classical optimal design methods have been used to design constrained layer

damping treatments. Lifshitz and Leibowitz (44:1027) developed an optimization program

using 6th order beam theory that includes design inequality constraints similar to those

seen in standard structural design problems. Hajela and Lin (29:S96) used both a

nonlinear programming approach and a genetic search method to get an optimal

segmented layer solution. Farkas and Jarmai (25:47) used optimal design methods with

inequality constraints to design a minimum cost sandwich beam whose outer layers have

a box beam cross section. Kodiyalam and Molnar (41:1) considered the optimization of

constrained layer damping treatments where both the constraining layer and the primary

structure are made of an aluminum honeycomb material.

C.- 'zstrained Layers on Structural Elements with Generalized or Circular Cross-Sections

Extension of Ross-Kerwin-Ungar Analysis: Ungar, 1962. In 1962, Ungar published

"Loss Factors of Viscoelastically Damped Beam Structures" (96:1082), which extended

the work by Ross, Kerwin, and Ungar on layered rectangular beams to axially uniform

beams with a more general cross-section. He first derived an expression for the loss

factor of a composite structure in strain energy terms, then developed equations for a

structure of arbitrary but uniform cross-section consisting of either two or three different

materials. These equations were then simplified by making assumptions about the relative
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properties of the viscoelastic material and structure. The loss factor for the generalized

beam cross section has the same form as the loss factor developed for the rectangular

beam.

Applying Ungar's analysis: Yin et. al., 1967. The validity of Ungar's analysis for a broad

range of cross-sections was investigated in 1967 by Yin, Kelly and Barry (103:773). The

researchers applied the expressions developed by Ungar to various cross-sections, then

compared the theoretical predictions to experimental results. One of the configurations

tested was a hollow circular beam consisting of concentric elastic-viscoelastic- elastic

layers. Both Ungar's theory and the authors' experiments indicated that the viscoelastic

material in this configuration provides far less damping than an equivalent amount of

material used in a flat constrained layer treatment on a rectangular beam. Ungar had

identified the separation distance between the neutral plane of the beam and the centriod

of the constraining layer as being critical to the performance of the damping treatment,

and this quantity is zero for the concentric circular configuration. The authors'

experiment confirmed that damping was negligible. To show the poor damping was not

some peculiarity of a circular cross section, a box beam with a concentric constrained

layer was tested; again both the experiment and the Ungar analysis indicated negligible

damping.

Constraining Layer as a Hollow Concentric Beam: DiTaranto, 1974. R. A. DiTaranto

investigated the vibration of a beam with a hollow circular cross-section damped by a
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concentric constrained layer (16:845). He modelled both the constraining layer aid the

inner structure as two distinct concentric beams with circular cross-sections coupled by

the viscoelastic layer, which was assumed incompressible. The two resulting fourth-order

partial differential equations were solved by assuming a sinusoidal mode shape and

harmonic time dependence. The problem reduces to a complex set of algebraic equations

involving the natural frequency and eigenvalues. He solved these equations numerically

and discussed the effect of varying some of the equation parameters.

To illustrate the results, he compared the problem to a two degree of freedom

spring-mass-damper system. At the fundamental frequency the two masses move in

phase, and the damper between them does not effectively dissipate energy because of the

small relative motions involved. At a higher frequency, the two masses move out of

phase and considerable damping is obtained. Similar results were seen in the more

complex concentric beam problem, where the fundamental frequency of the composite

beam has negligible damping. Because the beam and constraining layer move together,

minimal shear is induced in the viscoelastic layer. The results for the fundamental

frequency are compatable with the earlier investigations of concentric damping treatments

for beams of circular cross section (96:1082, 103:773)

Longitudinal Cuts in the Constraining Layer: Vinogradov and Chernobrevskii, 1980.

In 1980, Vinogradov and Chemobrevskii reported that the loss factors of a

constrained layer damping treatment on a tubular beam were significantly increased when
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the treatment was cut along the generator lines' of the beam (98:328). They analyzed and

tested configurations with one, two, and four cuts in the concentric constraining layer

along the surface generator lines. The damping treatments in the two-cut and four-cut

geometries consist of strips parallel to the beam axis. In their analysis, the researchers

assumed that the shear strain in the viscoelastic layer was uniform throughout the width

of the strip. Both theory and experiment showed that the loss factor increases with an

increase in the number of cuts in the damping treatment.

Beam as a Thin Shell: Lu and others. Several researchers have investigated the

use of constrained layer or other viscoelastic treatments to suppress vibrations in thin

cylindrical shells and rings. Several papers consider only "breathing" or lobar modes,

while others also consider beam bending modes. Two general configurations are

considered. The first configuration is a system of concentric shells consisting of

alternating elastic and viscoelastic materials (2:803, 4:121, 15:748). The second

configuration consists of a single shell with a discontinuous damping treatment such as

small lumped mass vibration isolators positioned around the shell circumference (24:902,

45:513), or a series of small beams attached with viscoelastic layers running parallel to

the axis of the shell (19:74, 49:395, 50:1).

In a recent paper, Lu, Roscoe, and Douglas used shell theory to describe the

motion of a simply supported cylindrical beam covered with strips of constrained layer

2 A generator line or generatrix is a line whose motion generates a surface, and in this context

it refers to lines parallel to the beam centerline that define the cylindrical surface of the beam.
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damping treatment running parallel to the cylindrical beam axis (49:395). The

inhomogeneous shell equations developed by Flugge (27:219) are used to describe the

main beam. The constraining layers are modelled as rectangular beams, the viscoelastic

layer is modelled as a massless spring, and the stresses from the damping strips are

modelled as surface forces on the main beam. The authors performed experiments which

were compared with the theory. In the analysis, the small beams acting as constraining

layers are assumed to be uniform along the length of the beam and simply supported. In

their experiment, the constraining layers were free-free and segmented into five pieces

along the beam axis. Although the analysis could not match the boundary conditions of

the experiment, the agreement between prediction and experiment for the tested

configuration was reasonable.

Because boundary conditions are difficult to handle in shell theory, finite elements

are often used for structures with circular cross section. Lu and Everstine used a finite

element approach to model a constrained layer damping treament on a beam of circular

cross section, as well as lumped mass dampers mounted on rings (47:199). Fowler and

others used finite elements in an optimal design program to find the optimal material

properties and thicknesses for damping treatments mounted on panels and cylindrical

beams (26).

Longitudinal and Circumferential Cuts: Saninger, 1990. Sattinger reported that a seg-

mented constrained layer treatment applied to a tubular structure can be effective in
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simultaneously damping global bending, torsion, and axial vibrations (84MBA ). The

interest in axial vibrations was tied to the use of tubular structures in large truss

assemblies, where the lowest frequencies of the entire structure, called "global modes",

involve axial vibrations of the individual struts at very low frequencies. Because the

frequencies of concern were much lower than the natural frequencies of the tubular

structure itself, a quasistatic approach was used in the analysis.

Sattinger used two different approaches to predict the loss factor for the

configurations considered. One approach was based on new interpretations of the

quasistatic closed form solutions generated by Torvik (94:85), and another approach used

finite elements with the strain energy principle of Ungar and Kerwin. The finite element

approach used offset beam elements for the viscoelastic layer. Because Sattinger was

unable to find any existing closed form solution for the torsion problem, he used finite

elements for the torsion problem and for those configurations that could not be evaluated

using the closed form analysis. He reported that the closed form analysis of the bending

and axial loss factors showed reasonable agreement with an experiment on a tubular

structure with hollow rectangular cross-sections.

Circular Shaft in Torsion: Chandrasekharan and Ghosh, 1974. In 1974,

Chandrasekharan and Ghosh investigated the damping characteristics of a fixed-free

composite circular shaft in torsion with an elastic-viscoelastic core (11:1). A quasistatic

-3 his reference is from a collection of papers; the letter designator "HBA" identifies the reference

instead of a page number.
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analysis was performem, then the shaft was modelled as a lumped parameter system using

equivalent quantities for inertia and stiffness. The authors concluded that a hollow elastic

shaft with a solid viscoelastic core was not an effective design for damping torsional

vibrations. If an elastic inner core is added, the annular viscoelastic layer yields a much

higher damping factor. They reported that there exists an optimum thickness of the

viscoelastic layer which maximizes the overall damping factor, and that a better damping

factor results if the inner elastic core is stiffer than the outer hollow shaft.

Spring in Torsion and Bending: Kishore and Ghosh 1975. Kishore and Ghosh performed

a static analysis of a bar with constant curvature under a combination of torsion and

bending (40:621). The bar had a circular cross-section with concentric elastic-

viscoelastic-elastic layers. In the configuration studied, the curved bar was clamped at

one boundary, and a lever lying in the plane of the beam and passing through the center

of curvature was fixed to the outer tube at the other end of the bar. A force perpendicular

to the plane of the beam was applied to the lever at the center of curvature, which in turn

transmitted a combined torque and an out of plane force to the outer tube. This loading

is equivalent to that seen by a helical spring. The authors reported that if the cross

section of the bar is fixed, the damping is maximized for a certain length of bar. If all

the layers are continuous, the loss factor drops sharply as the length of the bar increases,

but if the elastic core of the bar is cut into segments, loss factors equal to the optimal

value were obtained for longer bars. They also reported that the overall damping factor

increases as the radius of curvature increases, and ultimately reaches the value for a
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straight composite bar. As in the pure torsion problem, their analysis showed that then

exists an optimum thickness of the viscoelastic layer for a given set of geometric

parameters.

Constrained Layer Treatments with Composite Structural Elements

Recently several researchers have used constrained layer concepts to design

composite materials with integral damping. An early paper addressed stress coupling in

flat plates (64:347), while later papers addressed the phenomenon in circular tubes (12:1,

8:HAC, 5:HCB).

Sattinger and Sanjana used the analysis developed by Sattinger (84:HBA) to

predict the loss factor of a circular composite tube con:aining an embedded, encapsulated

constraining layer (86:1). The encapsulated layer concept consists of a constraining layer

sandwiched between two viscoelastic layers, which are in turn sealed between two load

bearing layers of composite material. The viscoelastic material is not in the load path.

Bronowicki and Diaz in 1989 reported a form of embedding in a hollow composite

tube called the "Alternating Ply Concept" for damping in extension and bending

(10:GCA). This concept increases damping by allowing the viscoelastic material to carry

some of the axial load. The walls of the tube consist of a viscoelastic layer sandwiched

between two angle ply composite layers. The angle plies are stiffened by alternating

segments of stiff uniaxial composites. The authors developed a finite element based upon

the closed form solution of membrane cylindrical shells to analyze this configuration.
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Chen and Wada (13:1) attempted to use axial/twist coupling in a constrained layer

treatment on an aluminum tube to induce additional shear in the viscoelastic layer. Their

analysis indicated that the additional tangential shear developed by the non-symmetrical

constraining layer was not enough to overcome the reduction in axial stiffness that the

off-axis ply generated, though the authors noted that the performance of such a treatment

on a tailored composite strut may be improved.

Belknap and Kosmatka constructed a circular composite tube which takes

advantage of the axial/twist coupling generated in non-symmetric composite layups

(7:HAC). The tube consists of a viscoelastic layer sandwiched b-.tween two composite

concentric layers which, when subjected to bending or axial extension, twist in opposite

directions and induce shear in the viscoelastic layer.

Barrett also investigated the use of stress coupling to reduce vibrations (5:HCB)

and developed a theory for constrained layer treatments on anisotropic laminated plates

(6:453). In Reference 5, the general analytical equations are developed for a composite

tube experiencing axial vibration with several alternating elastic and viscoelastic layers.

He applied this development to a three-layer problem similar to that of Belknap and

Kosmaika, and observed the existence of an optimal off-axis ply layup for his choice of

materials and geometry. He noted some of the advantages and disadvantages of

incorporating such an anisotropic ply configuration, including the advantage that such a

configuration will damp torsion, axial, and bending vibrations. A serious disadvantage

of this configuration is that the inner and outer composite layers must be allowed to rotate

relative to each other.
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Chen and Dolgin recently suggested an alternative use of composite smess coupling

in axial members that avoids the need for a rotational degree of freedom between the two

elastic layers. They proposed having the fiber orientation of the inner and outer

composite walls vary continuously along the length of the beam in the form of a sine

function, where the inner and outer walls are out of phase with respect to each other

(12:239). Along the length of the tube shear is induced in the viscoelastic material by

opposing rotations of the layers. Because these effects cancel at the ends, the edges of

the inner and outer tubes may be fixed to each other.

Summary

There has been an extensive amount of research in constrained layer damping

treatments. Several of the issues identified in this chapter will be discussed and extended

in later chapters. The issue of an optimal length for constrained layer damping treatment

surfaced in much of the research that was discussed, and it will be heavily stressed in

Chapters 3, 4, 5, and 7. In Chapters 4 and 6, damped beams are analyzed whose

equations of motion have the same form as those developed by Mead and Markus for a

three layer sandwich beam (59:163). The ineffectiveness of a hollow concentric

constrained layer damping treatment for damping a beam of circular cross section will

motivate the work in Chapters 6 and 7.
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Ill. Optimal Length of Constrained Layer Damping Treatments

The performance of a constrained layer damping treatment is greatly affected by

its length. In this chapter, the optimal length effect is described. It is shown that

segmentation of the constraining layer improves damping performance if the viscoelastic

layer is relatively stiff or the surface to be damped is relatively long. Equations are

developed that describe a constraining layer mounted on a substrate with an arbitrarily

surface displacement. Plunkett and Lee analyzed this problem for the special case of

uniform strain in the substrate (73:150), and their conclusions about the optimal length

of the constraining layer are presented. Their analysis is extended for the case of linearly

varying strain in the substrate, and the impact of constraining layer length on the loss

factor will be discussed.

Description of the Optimal Length Effect

In an effective constrained layer damping treatment, there is a balance between the

length of the damping treatment and the relative stiffness of the viscoelastic layer and

constraining layer. First consider an idealized constrained layer damping treatment, where

the viscoelastic layer is relatively compliant compared to the constraining layer (Figure

3.1). The forces transferred to the constraining layer are relatively small, and so the strain
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in the constraining layer is neglible. As a result, the longer the damping treatment, the

greater the viscoelastic shear and the greater the damping.

Now consider the case where the viscoelastic layer is relatively stiff compared

with the constraining layer. As the overall length of the strip increases, the stress in the

viscoelastic layer increases, and eventually the constraining layer begins to stretch. In

this situation, most of the viscoelastic layer is in a state of extensional strain, and the

shear strain is concentrated at the ends (Figure 3.2).

strain%0

Figure 3.1. Constrained Layer Treatment: Compliant Viscoelastic Layer

strain I0

Extension, not shear

Figure 3.2. Constrained Layer Treatment: Stiff Viscoelastic Layer
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The "Substrate Assumption" in Studies of Constrained Layer Damping Treatnents

The exact equations of motion for a beam with segmented constraining layers are

difficult to solve, so previous researchers sought ways to evaluate the optimal length

effect without dealing with the exact equations. One approach taken was to analyze the

constraining layer by assuming the main beam displacements are specified and are

unchange the forces in the damping treatment. In this dissertation, this will be

referred to as the "substrate approach".

When using the substrate approach, it is often assumed that either the surface to

be damped is in a state of uniform strain, or that the strain distribution of the surface is

known a priori, e.g., approximated by the strain distribution of the undamped structure.

The uniform strain assumption is attractive when general conclusions are sought about the

damping treatment that are independent of the base structure deflections, while the latter

approach is useful when the damping of a specific structure is sought. Damping

treatments are often added to existing structures that are much stiffer than the constraining

layer, and the assumption that the structure vibrates in its undamped mode shape is a

reasonable approximation for such structures.

Constraining Layer Equations of Motion

In this section, equations are developed that describe the displacement of a

constraining layer mounted on a substrate with an arbitrary specified displacement. The

analysis is consistent with the approach and assumptions made by Plunkett and Lee

3.3



(73:150). Their results for the special case of uniform substrate strain will be deiscribed

in the next section.

The damping within the system is modelled using the Correspondence Principle

as described in Chapter 5. The equilibrium equation for the constraining layer

displacement and its solution are developed as if the system is purely elastic and the

viscoelastic shear modulus is a real number. Once the corresponding elastic problem is

solved, a complex form of the modulus is substituted into the solution to calculate the

various energy terms required to identify the system damping. The following complex

form for the viscoelastic shear modulus G,* will be used throughout this chapter.

G: = G1'(1+i G,, (cosO +isinO), e =tan-,%., (3.1)

The elastic modulus G,' and the loss factor il, are experimentally obtained properties of

the viscoelastic material. In using the complex modulus, it is tacitly assumed that the

motion is sinusoidal in time. For a stress a(t) = Recae"•) and strain "y(t) = Re(y'e}),

the complex modulus is defined by the ratio of the two amplitudes, i.e., G,= oat. In

this chapter, however, the frequency is assumed to be low enough that all inertia terms

may be neglected.

In the analysis, it is assumed that the damping treatment is thin and Poisson

effects are negligible. The damping treatment has length L, and the constraining and

viscoelastic layers have thicknesses 2h, and 2h, (Figure 3.3). Both the damping treatment

and the substrate have unit width. The extensional modulus for the constraining layer,
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E,. is much larger than the viscoelastic extensional modulus. Normal stresses are

neglected in the viscoelastic layer, and the viscoelastic shear strain is assumed to be

uniform through the thickness of the viscoelastic layer. The constraining layer

experiences uniform normal stresses through its thickness. The coordinate system is

positioned so x = 0 is at the midpoint of the constraining layer.

If a free body diagram is drawn for a portion of the constraining layer (Figure

3.3), the following equilibrium equation may be formulated:

2h, L " d , (3.2)

S~L-

•"' Uo(x) x

A.x

2 ha EV ~ 2 h, + ICAx
AxX

TV

Figure 3.3. Free Body Diagram of Constrained Layer Treatment
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Let the constraining layer displacement in the x direction be identified as u = u(x), and

the substrate displacement in the x direction as uo(x). The extensional stress in the

viscoelastic layer may be written in terms of u:

du (3.3)

If it is assumed that the viscoelastic shear strain is uniform through the thickness of the

layer, the shear stress may be defined as:

14 - u0(x) (4
T GV Y V = GV (3.4)

1 appropriate boundary conditions are developed by noting that the ends of the

constraining layer must be free of stress. By substituting Equations (3.2) and (3.3) into

Equation (3.4) and substituting in the complex form of the shear modulus, the equilibrium

equation and its boundary conditions have the following form:

d2u -g g = (x)= 0 (3.5)

dx 2 Ud, S.±_

where

9 (2hc)(2h)Ec = g (cosO + i sine) , = ________Ec_
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Optimal Length Analysis of Plunkett and Lee: Uniform Substrate Strain

Plunkett and Lee analyzed Equation (3.5) for the case where the substrate

displacement has the form u.(x) = Lox, where 8 is the uniform extensional strain in the

substrate. With these assumptions, the solution to the equation and boundary conditions

becomes:

u = to x- ih -) (3.7)

By substituting the solution into Equation (3.4), the viscoelastic shear strain becomes:

* =u - u(x) -e _ sinl_(___(3

22h)

To provide a measure of the effectiveness of the damping treatment, Plunkett and

Lee defined a non-dimensional loss coefficient proportional to the system loss factor.

Their loss coefficient is equal to the energy dissipated over one cycle of vibration in the

entire strip, divided by a nominal energy term. The nominal energy term is equal to the

strain energy that would exist in the constraining layer if the constraining layer was in a

state of uniform strain of magnitude e,:

Wlomai 2 (2 he)EcLe (3.9)
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Consider the energy dissipated over one cycle of vibration in an element of

viscoelastic material with complex modulus G,* = G,(cosO+i sinO). Let the shear strain

" and the strain rate •f be represented by the following expressions:

*= ye e' - y. (cosft+i sin~t)

(3.10)
" -- 0 yo (-sin0t+i costt)at

Use has been made of the fact that a complex magnitude of strain 7f can be replaced by

its real magnitude y. through redefinition of the origin of time. The stress in the material

resulting from a strain f" becomes:

o* = G, Y. [cosO cosOt - sinO sinOt (3.11)

+ i (cosO sinOt + sinO cosOt)]

The energy dissipated per unit volume is the real part of the stress multiplied by the real

part of the strain rate y* integrated over the period of the vibration:

ft"÷ = 2 (3.12)
Aw0 = f 1 Re[o ] Re[t *] dt = i G, sine y(

Plunkett and Lee used an expression similar to Equation 3.12 integrated over the volume

of the viscoelastic layer to define the total energy dissipated in the damping treatment

(assuming the strip has unit width):
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AW - xG,(2h)sin0frl"yi dx (3.13)

By calculating AW, applying various trigonometric identities, then dividing AW by the

nominal energy term in Equation (3.9), Plunkett and Lee presented the following form for

their loss coefficient (73:153):

AW _4 • sinh(A) sin(!) - sin(B) Cos(.)]
AW 4- 22

W.&,ai Vi L [ coh(A)+•-js() (3.14)

A = .iL cos(!), B = ViL sin()
2 2

Equation (3.14) will be shown to be a special case of the linearly varying strain problem

that will be derived in the next section. It should be noted that the system loss coefficient

appears in this relatively simple form because of the nominal energy chosen. Equation

(3.14) does not produce an actual system loss factor, which is defined as the energy

dissipated over one radian of a cycle of vibration !-v ..,ed by the maximum strain energy,

U, stored in the system. The system loss factor would have the form AW/(2nU). The

strain energy of the substrate is not readily defined because the substrate is considered

arbitrarily large. The use of the nominal strain energy in Equation (3.14) produces a loss

coefficient that is independent of the substrate characteristics, yet can be used to obtain

the true loss factor once the strain energy of the substrate is defined.

The loss coefficient defined in Equation (3.14) is a function of only two

parameters: the viscoelastic loss modulus 0 = tan"1 (ijj) and the non-dimensional stiffness
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parameter -/g L. When Plunkett and Lee plotted the loss coefficient as a function of /gL

with 11, held fixed, they noted that the function was maximized for a value of VgL near

3.28, regardless of the choice of Tr,. This relation identifies an optimal length for the

strip if the material properties and thicknesses of the damping layers (and therefore g) are

specified:

LO -,a _ 3.28 (3.15)

Because of its simplicity, this result has been widely applied in the design of damping

treatments for cases which do not reflect the conditions in which the result was derived.

Extension of the Plunkett and Lee Result: Linearly Varying Substrate Strain

In this section, the Plunkett and Lee analysis is extended to consider a damping

strip on a substrate with linearly varying strain. This extension of the existing analysis

allows conclusions to be drawn about the optimal length of constrained layer damping

treatments for a broader class of problems.

A substrate with linearly varying strain will have a quadratic surface displacement.

If uo(x) = 1/2 ax2+bx+c, Equation (3.5) will have the following form:

d g*u = - g ax2+bx+ C 0 (3.16)

This problem reduces to the case considered by Plunkett and Lee when b = e, and a =
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c = 0. The solution to the equation has the following form:

I - 2+bx+¢+.+
l~ax 9bxOc.A X +coshlhpx x (3.17)

where

p= -aL Q-bL 2 = QhJ1 (L7L) (3.18)

2V7i 2b~L 2

The solution for u may be used to define the viscoelastic shear strain:

* U -Uox I 1 a -aL cod1hflJ - b sinhig~x 1 (3.19)Y*- h, by 2 8•7sinh(Ar-) Vgcosh(VI;) (.9

To simplify the expression for viscoelastic shear strain, define the non-dimensional

parameters C1" = Vg*L and C2 = al/b. From the definition of g" and the definition of the

root of a complex number (89:10), the complex parameter C," may be written as C1" =

C1 ( cos(0/2)+i sin(0/2) ), where C, = VgL. When these terms are substituted into

Equation (3.19), it can be written in the following form:

.bL U C2_C_2 CSh" h . (3.20)
C1 '2 sCinh (_) C;" cosh •

2 2

A loss coefficient similar in nature to that defined by Plunkett and Lee may be

calculated. Define a loss coefficient H (capital eta) to be equal to the energy dissipated
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over one cycle of the viscoelastic layer divided by 2x U....,, where the nominal energy

equals the total strain energy that would exist in the constraining layer if its strain were

equal to the substrate strain below it:

2 fE o(X+b)2 dVol= iE,(2hd b2L[I +-L (L)2] (3.21)

The loss coefficient H has the following form:

A W G, (2h,) sinofIy"12dxH-- _ _ _ _ _
2 7 U,,ma~ E, (2h,) b 2 L [ +I (±L__.)2]

+ 12 b (3.22)

12

, sinO

(1 +L )L

where

A•2 C2 A;

.2 2 2Cfsinh(!C 1 ) 3A C o csh(!C1 ) (3.23)
C1  2 21

Some manipulation of the integrand in Equation (3.22) is desirable before integration.

In this dissertation, an overline identifies the conjugate of a complex number, and Re[z'l

and Im[z'] identify the real and imaginary parts of the complex number z. Consider the

following properties of complex numbers:

iz*2  *(3.24)
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x +y x +Y xy* , Tx * (3.25)

x'7 + xy" = 2 Re[ ' -- 2 Re[[ (3T2)

sinh(a * ib) = sinh(a) cos(b) ± i cosh(a) uin(b) (327)

cosh(atib) = cosh(a) cos(b) ±I sinh(a) sin(b)

By using Equations (3.24)-(3.27), the integrand in Equation (3.22) can be written in the

following form:

A; -A2coshvr/ *x - Asinhvr x r

SIA1 *12+ IAI12lcoShVgX12 + I4A"12 1sinhvr*xI 2 - 2Rep's A2"coshVgrx]

- 2Re[Z1A siA3 'W -x11 2 RetA2 ATCOhJFX sinhVg x]

(3.28)

The last two terms in Equation (3.28) are odd functions in x, and their integrals over the

strip length are zero. The loss coefficient may therefore be written as the sum of four

integrals:

2

H - [- i + 12 + 13 + 14] (3.29)
1 + IC212

where
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'2= JA1 fJ I COShrg -X 12 dfr

L (3.30)

I.,=I~fl L f I Sinhy'giX 12 dfr
2

L

I=_.! Re e[A ;A Cosh x]I dx
2

Define the following relations:

a =Vpe CS yVg-sin! , a2+p2 = g (3.31)
2 2

The expression qg'x = lgx [cos(0/2)+i sin(0/2)] may be used with the identities in

Equation (3.27) to manipulate the integrands listed in Equation (3.30):

IcoshrOxl2 = cosh2(, x) oCoePx) + sinh2(ax) sintC(x) (3.32)

= [ co•h(2eax) + cos(2 Px)]
2

IsinhVgXI2=gnhW(tg x) cos2(p x) + CO2 (a X) sin2(p x) (3.33)

_ 1 cosh(2azx) - cos(2 ) ]x)
2

P7RIA~cosh1 / *x]
= R4[•AI.* Re[coshVi*x]-/n4Ii*A;] Imtcoshv§g*x] (3-U)

S47 ]* cosh(a x) cos(P x) - Inhax) .1
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The integral of Equation (3.32) is:r, Icohff"xI2- dx 2 sinh(caL) sin(_L)

2a 2P

The integral of Equation (333) becomes:

f_'IsinhF.x12 dX= sinh(c )_ sin(P3L) (336)

2a 2P(

The integrals of the components of Equation (3.34) are:

2 2coshh(.x) ) sin(Li

f'~cosh(x) cos(fpx) ix = 2a sinh(.L2±)Cos(EýL) + 213 co -2L- s(2L (3.37)T CcS(+P

f 2 a cosh(-±-) sin(±-) - 2 D3 sinh(!-)cos(-)(.

_sinh(ax)sin(3x) dr= 2 2 2 (3.38)
L (X2+p2

Integrals 1,, 12, 13, and 14 can be formed by the proper combination of these integrals with

the appropriate coefficients. The square of the moduli of A,', A2%, and A3" may be written

as functions of C1, C2, and 8:

JAI*12  C2  (3.39)

c 4

IA2 12= C2  (3.40)
2C, [ cosh(a L) - cos(O L) ]
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JA;.12 2 2 3 )

C, [ cosh(a L) + coso L) ] (3.41)

The term A1'A2" may be written as:

A--=A __C2 C2 (Re•,-i Im,)TIA2 2CCs ± +M=. (3.42)

2C•(cos(-2) -i sin(2)) sinh(L) 2 C' (Reg.+Im,)

where

Re de= Rlcos(e) -i sin(±2)) sinhl)] (343)

= cos.!.)sinh(.!2±.) cos(!..i) + (sin±) cosh(.-)snKr222 2 2 2

ma,,=m�IMcos(.) -i sin ()) sind-j)] (344)

- cos(±) cosh(.-) sin(!L-) - sin(e) sinh(-•) cos(LL)

With the components of I, 12, 13, and 14 defined, the loss coefficient H can be formulated

from Equation (3.29). The loss coefficient is a function of C,, C2, and 0 (or T71, since Tb,

= tanO ). In the next section, contour plots will be used to show the effect of changes

in the three parameters on the loss coefficient.

It can be shown that the loss coefficient of the uniform strain problem developed

by Plunkett and Lee is a special case of the development above. The Plunkett and Lee

configuration is modelled by setting a = c = 0 and b = e. in the definition of u1(x). If

a = 0, then C2= 0, and I1 = 12 = 14= 0. By combining the terms from Equations (3.33) and
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(3.41) above, it can be seen that I4 has the following form:

sinh(cxL) _ sin( OL)

cos(l) sin(!) (3.45)1 a-IA; 12 f f I sinh•g xl12 dx 2
I d

,
3 c[ cosh(a L) + cos(A L) ]

There is a relationship between the variables ot and f3 defined in Equation (3.31) and the

variables A and B defined in Equation (3.14) that were used by Plunkett and Lee:

A = aL = fg'L cos(-±) , B = 13L= •F"L sin(!) (3.46)
2 2

By substituting A and B into Equation (3.45), replacing C, by 4gL, substituting 13 into

Equation (3.29), noting that C2 = 0, and invoking some trigonometric identities, the loss

coefficient becomes:

2 sinh(A) sin(±) -sin(B) cos(.) (3.47)H =C 1 sin0 13 =--22(.7

F9jL [cosh(A) + cos(B)

The Plunkett and Lee loss coefficient defined in Equation (3.14) is equal to 2x H,K where

the factor of 2x is accounted for in the definition of H. As a result, the Plunkett and Lee

result may be considered a special case of the linearly varying strain analysis presented

in this section.

The function I/O provides a measure of the ability of a damping treatment to

utilize the inherent damping of the viscoelastic material. Figure 3.4 contains a plot of

I/O for the uniform strain problem for various values of 0 = tan-fl,, where H is defined
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in Equation (3.46). The value of ,gL that provides the maximum loss factor for a giveo

value of 0 is plotted in Figure 3.5. The value of /gL is relatively consistent over a lar

range of T,, approaching 3278 as % drops to zero, equal to 3.25 at i1, -1, and dropping

to 3.195 for il, = 10.

-__ 1•,- 10.15 2 T1,,.1
It/es

0.1

2 4 6 $ 10 12 14

C,

Figure 3.4. Damping Effectiveness as a Function of Stiffness Parameter
(uniform substrate strain)

v'gL 3.T,2 -_

3.24

3.32

3.2-

3.18 2 4 6 6t 10 11V

Figure 3.5. Values of -/gL that Maximize Plunkett and Lee Loss Coefficient

(uniform substrate strain)
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Linearly Varying Strain: Effect of Curvature on Loss Factor

The analysis described in the previous section may be used to show how the

optimal length of the constrained layer damping treatment is affected by the parameter

C2, a measure of the non-uniformity of the substrate strain. Recall that the substrate

displacement uo(x) = 1/2 a x2+b x+c, where x = 0 at the midpoint of the constraining

layer. The substrate strain is equal to e(x) = ax+b, and for a segment of length L, the

change in substrate strain across the strip length is Ae = aL. The nonuniformity

parameter Cq = aJJb is therefore equal to the change in strain over the strip length divided

by the mean value of the strain. Cq may take on any real value. For a state of uniform

strain, uo(x) = bx+c and Cq = 0. The parameter Cq increases as the linear component of

strain is increased, and if the mean of the substrate strain is zero, then Cq is infinite.

Surface and contour plots of the function 1/6 as functions of C1 = -/gL and C2

= aljb were plotted to evaluate the effects of substrate strain nonuniformity on the

effectiveness of the damping treatment. One group of plots has the domain Cq r [0,151

and C2 r [0,30], while the second set of plots has the domain C1 e [0,10] and C2 e [0,5].

Representative surface plots for both groups are seen in Figures 3.6 and 3.7. Figures 3.8

through 3.13 show contour plots for ij, = .1 (0 = .0997), 11, = .5 (0 = .463), and i1j = I

(0 =.785) over the two domains.

The contour plots illustrate that the value of C, that provides a maximum value

of 1/0 will increase with an increase in C2, then approach a limit as Cq becomes large.

The limiting value will vary with the value of the viscoelastic loss factor rl,. If C1 . is
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the value of Ci that provides a maximum value of W. then the optimal length of the

damping strip is equal to C ,, divided by the square root of g. The trends shown In the

contour plots indicate that the optimal strip length for a case of linearly varying stmin in

the substrate is longer that the optimal length for the case o( uniform strain.

Nonniorit (C)Maue;i=1 1 e ,5 2  ~ 030 ]

0/ .1 5
0.15

O . O 0203

C, 10

160

Figure 3.6. Damping Effectiveness as a Function of Stiffness (C1 ) and
Nonuniformity ( C2 ) Measures; il, 1; C1 e [0,15], C2 e [0,30]
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Figure 3.8. Contour Plot of Damping Effeciveness;

'q,= .1 (0=.0997); C, e [0,10]. C2 e [0,5]

350 A& jj
20

10

Figure 3.9. Contour Plot of Damping Effectiveness;
fl - .1 ( 0 = .0997); C1 e [0,15], C2 E [0,30]
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26 5 O 1 1.0

Figure 3.10. Contour Plot of Damping Effectiveness;
III = .5 (0 -.464); C, e [0,101, q e [0,5]

30

032 4 1Sto12 1
Figure 3.11. Contour Plot of Damping Effectiveness;

3.22



4

.. aq

0 .

C2  .4

2

a C1 q 10

Figure 3.12. Contour Plot of Damping Effectiveness;

=1 (0 .785); q GE (0,101, q1 6 (0,51

30

25

20

.11
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0. A10.4

2 4 4 0 10 12 14

C,

Figure 3.13. Contour Plot of Damping Effectiveness;
= 1 ( 0 = 785); C1 e [0,151, C2 e [0,30]
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Figures 3.14 through 3.16 contain plots that show the dependence of HM0 on Cq

for C. = 0, C2 = 5, and C = 50 for various values of il,. Though the value of Ci at the

maximum value of the function varies with the value of C2, it can be seen that the

optimal value of C, is relatively insensitive to variations of TI, if C2 is fixed. Table 3.1

provides the values of C, that provide a maximum value of the function H/O for specified

values of C2 and %. From Table 3.1 it can be seen that the use of the Plunkett and Lee

optimal design criteria of C, . = 3.28 provides an error of less than 10% for values of

11, < 1.6 and C2 < 2, but the discrepancy increases with the value of C2. The Plunkett and

Lee analysis underpredicts the optimal length if the change in substrate strain over the

length of the damping strip is large compared to the average value of the strain.

Table 3.1 Values of C, that Maximize Loss Coefficient
for Specified 0 and C2

C2: 0 1 2 3 4 5 10 50

11, (0)
.20 (.20) 3.28 3.38 3.72 4.38 5.24 5.91 7.02 7.41
.50 (.46) 3.27 3.36 3.69 4.34 5.23 5.90 6.98 7.36
1.0 (.78) 3.25 3.34 3.64 4.28 5.20 5.89 6.91 7.26
1.6 (1.0) 3.23 3.31 3.59 4.20 5.19 5.89 6.85 7.16
10 (1.5) 3.20 3.25 3.44 3.93 5.23 5.93 5.89 6.87
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Figure 3.14. Damping Effectiveness as a Function
of Stiffness Parameter(C 1 ), (C - 1 )
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Figure 3.15. Damping Effectiveness as a Function

of Stiffness Parameter ( C, C2 = 5)
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Figure 3.16. Damping Effectiveness as a Function
of Stiffness Parameter(C 1 ); (C 2 - 50)

Chapter Summary

In this chapter, the impact of length on the effectiveness of a constrained layer

damping treatment was discussed, and it was shown that damping effectiveness could be

optimized by choosing a damping treatment length appropriate to the geometry and

material properties of the viscoelastic layer and constraining layer. The equilibrium

equation and boundary conditions were formulated for a constraining layer on a substrate

with a specified displacement. The work of Plunkett and Lee, who considered this

problem for the special case of uniform strain in the substrate (76:150), '. iscissed.

They showed that a loss coefficient for this configuration depends only on the parameters

VgL and 0, where 0 = tan"'il,, and v'gL is a stiffness parameter that is a function of the
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material properties and thickness of the damping layers. Plunkett and Lee identified an

optimal length for the constraining layer strip equal to 3.28//g. Numerical results given

here (Figure 3.5 and Table 3.1) show how the maximum of the loss coefficient varies

with changes in il, for the uniform substrate strain prcl.letn. Table 3.1 shows that the

optimal length drops slightly with an increase in il, but the effect is less than 2.5% for

t1, < 10.

In this chapter the Plunkett and Lee analysis was extended for the case of a

linearly varying substrate strain of the form ax+b, where a and b are arbitrary constants.

The corresponding loss coefficient was shown to be a function of parameters 0 and C1

= VgL, plus an additional parameter that accounts for the degree of non-uniformity of the

substrate strain, C2 = aL/b. The value of the optimal length of the damping strip is

obtained by identifying the value of C1 that maximizes the loss coefficient for a specified

value of 0 and C2 , then dividing by Vg. It was shown that an increase in C2 results in

an increase in the value of C, that provides optimal damping, but that the shift in optimal

length is not rapid. The difference between the optimal length from the linearly varying

analysis and the value identified by Plunkett and Lee in the uniform strain problem is less

than 10% for values of 11 < 1.6 and C2 S 2, but the discrepancy increases with the value

of C2. As a result, if the strain is "almost uniform", designs may be based on the original

result. If the strain has a significant variation across the length of the strip, interpolation

functions may be used to get a quadratic curve fit for the substrate displacements, and the

parameter C2 may be calculated.
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IV. Developing the Exact Equations of Motion for a Rectangular Beam

with Segmented Constraining Layers

In Chapter 3 it was shown that a constrained layer damping treatment provides

better damping if its length is properly chosen. In this chapter, the exact equations of

motion are developed for a rectangular beam with a damping treatment applied to both

sides of the beam. First, the equations of motion are developed assuming the damping

treatment is continuous over the full length of the beam Equations are then developed for

the case where the constraining layer is periodically cut into segments of equal length.

The equations are non-dimensionalized and the approach used to solve the equations is

described. In Chapter 5, the solutions obtained by using this approach are compared with

various approximate methods.

Equations of Motion of a Symmetric Five Layer Beam

In this section, the equations of motion are developed for a beam damped with

continuous constraining layers. The Correspondence Principle is used in the development

of the equations of motion. In thiF approach, equations of motion are formulated and

solved as if the viscoelastic material were a elastic material whose shear modulus GQ were

a real number. Once a solution is found, the shear modulus of the viscoelastic material

is replaced by a complex number, G,(1+iTlv) to model the effects of damping in the

viscoelastic layer.
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Mw beam that Is analyzed ham a uniform rectangular cioss scdm two

symmetric strips of conatrained layer damping treatment parllel the beam meutan pim

(Figure 4.1). The equations of motion are formulaWe in terms of dte mode dhapes w oad

u. which corrsnd to the transverse displacement of the main beam and the axial

displacement of the midplane of the upper constraining layer (Figure 4.2). M mode

shapes w and u are functions of z, and their corresponding displacements * and 0 am

functions of z and time t.

The z axis is coincident with the centerlin oi .o oeam. Because of the

symmetry of the constraining layers, their axial displacements arm equal in magnitude and

opposite in direction. It is assumed that the damping treatment moves with the same

transverse displacement as the main beam, and that the main beam is much stiffer than

the constraining layers. Note that there is no axial displacement of the beam midplane

due to the equal and opposite loadings that the damping strips exert on the main beam

in the axial direction.

- - - - - - - - - -Eb- 2,h

Figure 4.1. Symmetric Five Layer Beam Geometry
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Figure 4.2. Beam Displacements

The equations of motion are developed using Hamilton's principle. The kinetic

and potential energy terms included in the formulation art the same as those considered

by DiTaranto (17:881) and Mead and Markus (59:163). Rotatory kinetic energy and shear

deformation are ignored because the beam length is large compared to beam height. ':Ue

potential energy due to extension of the viscoelastic layer in both axial and transverse

directions is also neglected because the viscoelastic extensional modulus is much smaller

than the extensional moduli of the constraining layer and main beam.

The total kinetic energy of the main beam, constraining layers, and viscoelastic

layers due to the transverse displacement becomes:

T= Lf° m4 [* dz (4.1)

where
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lot p i, A + 2[p e A c+ py ,A V] (4.2)

Ab a 2 hbb, AC= -2h&b, A, - 2hb

It is assumed that the time dependence of the displacement * is of the form e", where

11 represents the natural frequency of the system. The variation of the kinetic energy

becomes:

8Trni f= o mw8wl• (4.3)

where w, the mode shape, is solely a function of z.

The strain energy of the main beam and the constraining layers due to bending and

its variation have the following form:

U f L D w" 2 d, 6Ub foLD W-/85/IW dz (4.4)

where

dz(' Ds = Eb Ij + 2 E, I1 (4.5)

After integrating by parts, the variation of the bending strain energy becomes:

Ub D = foL, w""6wdz + D), w"8w' IL - D, ..'8w IL (4.6)

The axial strain in each of the constraining layers is equal to u', and the resulting strain

energy for the two strips becomes:
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U , fL 2E,A, (,) dA (4.7)

A, taking td variatio of Equation (4.7) and interating by parts:

awe I-f0 L2E.A, aa"u dz 2EA x'buC (4.8)

The relative axial motion between the upper and lower surfaces of the main beam

and constraining layers creates shear in the viscoelastic layer (Figure 4.3):

, a A uI yew/ (4.9)
2 h, W

where

UA hw' , - -hw' y, = hb+2h÷+hC (4.10)

Figure 4.3. Viscoelastic Shear Strain
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The potential energy of the two viscoelastic layers becomes:

L 2G, A2
u,= . f' [u +y°w'd (4.11)

After integrating by parts, the variation of the viscoelastic potential energy becomes:

LU = 2GV A {' (u. a' - u'yw'z

a U,,= fo (2h) 2{(U"+Y.°,6 - (,Y

(4.12)

+ 2 G Ally* (U+y.w"•8,w•
(2h)2 

0

Hamilton's principle may be written in the following form for the problem:

f:2 f, - E 6U] dt = 0

ti

fi" f L .. ]wdz dt (4.13)

Equation (4.13) consists of a combination of terms within an integral over z and a set of

boundary terms. The terms used in Equation (4.13) are defined in Equations (4.3), (4.6),

(4.8), and (4.12).

By setting the arguments of 8w and 8u within the integral over z to zero, and

dividing each by D, and 2 EtA, respectively, the equations of motion are identified:
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w" 2 G, AV, YO m
W - M2GAV, [t'+.y w/] - 02 W = 0 (4.14)

(2h) 2 Dg

U/- 8u = g Y. WI (4.15)

where

9 GVyO hb+ 2I1v+hC8-Ec 2h , 2hc ' -o=h÷hh (4.16)

D, = Eb 'b + 2E€ Ic , = pM Ab+ 2 pv A,+2pAc

When the boundary terms are set to zero, the following relations are obtained:

- 2GVAYO (U + Y.wj) aw 0 (4.17)

(2h)

D, wI' 6w' L= 0 (4.18)

2 Ec Ac u' 5u =0 (4.19)

Equations (4.17) through (4.19) identify boundary conditions that must be satisfied at the

free ends of the beam. Equation (4.17) specifies that at the ends of the beam either the

total applied shear (i.e., the term in square brackets) must equal zero or the w

displacement must be specified (i.e., w---0). Equation (4.18) specifies that either the

applied moment D, w" must be zero or that the rotation w' must be specified. Equation

(4.19) specifies that either the extensional stresses at the free ends of the constraining
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layers must be zero or that the u displacements must be specified. The appropriate

boundary conditions to use for a given problem will depend on the nature of the

constraints at the ends of the beam and constraining layers.

Adapting the Equations for Segmented Constraining Layers

In this section, the equations of motion and the boundary conditions for the

continuous damping treatment are modified to represent a configuration with M damping

segments, each with length 2LM. The effect of segmentation on the equations of motion

may be understood by considering the approach used to derive the equations. Both the

continuous and the segmented constraining layer configurations have the same general

definitions for the strain energy terms at an arbitrary position on the beam. Each energy

term for the continuous constraining layer formulation is defined over an integral from

z=O to z=L. Because u is not continuous across the cuts in the constraining layer for the

segmented configuration, each of the energies in the segmented problem must be defined

piecewise over each segment:

T u 2L 4 LcI A.. dz (4.20)
'JO~~J2L~C i,-2L .Ijd

When these individual integrals are integrated by parts, the resulting boundary terms are

defined at the cuts in each segment:

2L 4L (.1c)LC+ ( 1....)2L' + + 12(M -1) 42
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When Hamilton's principle is applied, the results are in the following form:

E[8T-8U ] - 0

"- f [(...)8u,+(... )8w,]k + fU [(...)8U2+(...)8w2 dz(+02L (4.22)

+ 2 I()... )8UM+8& ... ',]dz201d-I)L,

+ [...)au1 +( ... )8W, +(... 8W(Jj + ... + R(... )auM+( ... )8wM+ ...16w8 I2(M-)L,

To identify values of u and w over the "mth segment", the subscript m is used.

When the coefficients of the 8u. and 8w. terms within the integral are set equal to zero,

coupled differential equations are generated for each of the M segments. The differential

equations defined over the mth segment are identical to those for the unsegmented

configuration:

//. 2 G.AV yo[.[+y.,, W.1 m,
X 2 ý GVA- Y2[W = 0 (4.23), (2h)2Dt D'

// / (4.24)
Un- gu g I w1 YO WM

When the boundary terms associated with 8u. are set equal to zero, boundary

conditions are obtained that specify that both ends of the mth constraining layer segment

must be free of extensional stresses:

EA u' 01). 0, E, A, u' 0 (4.25)

Continuity conditions specify that the beam must have a single displacement w and slope
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wO at each cut in the constraining layer:

Iz*2L~ ~~in1[g.ZsL. 1~ ~ **~(416)
w. I,.,2=40 w.., I,.,2,., ' ,.,.L,. z:. 2x,,.,

Finally, the boundary terms that contain 8w.' and 8w. must be addressed.

Consider the form of the 8w. terms from Hamilton's Principle:

(....)wj+ ( ....)8W2 (.. 8A 1 O (4.27)

This condition is satisfied if the terms at z=O and z=L ame set equal to zero and if the

terms at the inter-segment boundaries are set equal to each other:

.... = 0 , (....)awMIL = 0

(4.28)

(....)awIl, = (....)8w21U,, (....)8w214L = (....)aw314 L

Since 8w. and 8w.., must have the same value at the same point, the inter-segment

boundary conditions may be satisfied by setting their arguments equal to each other. The

same approach can be used for the boundary conditions that contain 8w.,'. The

inter-segment boundary terms from Hamilton's Principle containing 8w.,' and 8w,. yield

continuity conditions for total moment and shear at the segment boundaries:

D~w~ L2/ I D, "lI-aL (4.29)t z-2m, 
I4z-2.1,

4.10



[D " 2- G2Ay* (.÷,
[-S sX (2h2? ] Iz.L. (4.30)

[ , W,."., (2G$ ) 2 ,.y* I

The remaining boundary conditions at z=O and z=L are applied to the solutions of

segment I and M respectively:

-2G A, y.(u + yw') awl 0 (431)
[DSp.'" - (2h)2  I 1]

2G, - y (U + yo (4-)
-~ W (2 h)2  UM+YOWJ') 42

I), w(' 8w, .0= 0, D, w,De 6w, / ./ 0 (433)

To summarize, the equations that define a beam with M constraining layer

segments consist of M pairs of differential equations identical in form to the coupled

equations of the beam with continuous constraining layers. For the segmented problem,

there exist a total of 6M boundary and continuity conditions that couple the M pairs of

equations together. There are three boundary conditions at each end of the main beam

that are identical to the unsegmented problem. There are also six conditions at the internal
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segment boundaries that specify that the displacement, slope, shear, and moment of the

main beam are continuous across the cut and that u.* and u'.,1 are equal to zero.

Sixth Order Equations of Motion

For the damped beam with continuous constraining layers, the equations of motion

consist of a pair of linear coupled equations in the variable w and u (Equations (4.14) and

(4.15)). These equations can be combined into a single 6th order equation in w:

(6)- (+Y )w(')- - - 8w ) = 0 (4.34)

W g(I +Y )WDt ("-g

where

g ~G Y = 2 y, b(2h)Ec (4.35)
(2hb)(2hC)EC DI

The u variable may also be eliminated from the boundary conditions. The requirement

that the extensional strains are zero at both ends of the constraining layer may be written

in the following form:

l4Iz.L = - W' -gYw" - -- w 0 (436)

The total bending moment MT at any position of the beam is proportional to the following

expression:
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S -- -W - 2 I(437)D,

If one of the ends of the main beam is free of applied moment, the expression in Equation

(4.37) is set equal to zero at zO0 or z=L. ( If one or both ends of the main beamam

restricted from rotation, then w' is set equal to zero at those positions.) For end

conditions where both u' and the total moment MT is zero, Equations (4.36) and Equation

(4.37) can be combined to produce the condition w"=O.

Because rotatory inertia is neglected, moment equilibrium on an element of the

beam requires that the total shear force VT is equal to the first derivative with respect to

z of the total moment. The total shear force is therefore proportional to the derivative of

Equation (4.37):

VT - wO) _ g( +Y) w"'1 - Dit w (4.38)Dt

As with the total moment, the expression in Equation (4.38) is set equal to zero at z=O

or z=L if one of the ends of the beam is free of applied shear force. If displacement

is restricted at one of the boundaries, then z is set equal to zero at that position.

It is interesting to note that both the equations and the boundary conditions

described above for the symmetric five layer beam have the same form as the "sixth order

beam theory" identified by Mead and Markus for an unsegmented three layer beam

(59:163), except for slight differences in the constants g and Y. The Mead and Markus
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expression for g reduces to the form identified in Equation (4.35) if it is assumed that

2 h b Ebt- -. Because the balanced loads of the five layer configuration produce no axial

elongation of the neutral axis of the main beam, the main beam behaves as if its

extensional stiffness is infinitely large, but its bending stiffness is finite. The value of Y

defined in Equation (4.35) is equal to two times the Mead and Markus expression for Y.

The doubling of Y occurs because Y provides a measure of the relative stiffness of the

constraining layer as compared to the main beam, and the five layer configuration has two

constraining layers instead of one.

The same substitution of variables described above can be used for the segmented

problem. The sixth order differential equation defined over the mth segment becomes:

(6) (4) 0 2m t/.Wi,- g(l+Y)w, - - (Wi - gw,) =0, m = ..M (439)

The requirement that ur' = 0 at both ends of each segment generates 2M boundary

conditions:

n / 12mt

w,, - gYw w, a I-2•c(.-, )= 0

(4.40)
///// ___2 ml.

w, - gY wi Dt wIf 0 m= ... M

The expressions in Equations (4,37) and (4.38) that are proportional to MT and VT are

used to enforce continuity of moment and shear at the inter-segment boundaries. They
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are also set equal to zero at z=O or z=L if the beam has a boundary condition that is free

of moment or shear. These boundary conditions are described in the next section for the

case of a cantilever beam.

Solving thv Equations for the Segmented Damping Treatment:

To obtain an exact solution for the segmented system of equations, the differential

equation must be solved over the length of each segment using the appropriate boundary

conditions. In this section, the approach is illustrated for the case of a cantilever beam

with M pairs of identical constraining layer segments with free ends. Each of the

damping segments has length 2 L,.

The M differential equations defined in Equation (4.39) must be solved over each

of the beam segments. The general solution over the mth segment may be written in the

following form:

w.= 1  A.j exp[pj z] (4.41)

The pj eigenvalues are obtained from the roots of the characteristic equation of Equation

(4.39). The six distinct eigenvalues are identical for all segments.

The general solution to the equation is substituted into the appropriate boundary

and continuity conditions for each segment. The total set of boundary conditions for a

beam with M segments produces a homogeneous matrix equation with 6 M unknown Aý.j

coefficients. The individual entries of the 6M x 6M matrix are functions of the p,
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eigenvalues, and the eigenvalues are functions of the unknown natural frequency of the

system:

21[PJ(Q)I fPj(O)] . . . 0

= (4.42)

A6 . Pj(Q) M6 0

(The form of the individual functions within the matrix will be described later in the

chapter.) The natural frequency may be found by setting the determinant of the matrix

equal to zero. Once Q is identified for a particular mode, all terms in the boundary

condition matrix are specified and the equation may be solved for the A,. coefficients.

Though this approach is straightforward and often used in structural vibration

problems, the implementation for this particular problem is challenging. It will be seen

in the next section that the matrix in Equation (4.42) contains a mixture of very large and

very small terms that make the use of standard numerical methods difficult. As a result,

any configuration that is more complicated than the single segment case is customarily

approached with finite element methods.

Non-Dimensional Variables. When the main beam is covered with damping segments

of equal length, the use of non-dimensional spatial and temporal variables can simplify

the problem. If both the variables and the form of the assumed solution are chosen
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properly, the magnitudes of the numbers in thc tundary condition matrix are smaller.

Furthermore, the boundary condition matrix can be assembled from a set of submatrices

that have the same form for each segment.

The greatest improvement from non-dimensionalization results from the

transformation of the spatial coordinate. The non-dimensional spatial variable zeta (ý)

is defined as ý =x/(2 L), where 2L, is the segment length. With this choice of variable,

the boundary conditions are applied at ý=(0,1,2.... M) for a M segment case. The

variable transformation requires a change in the differential operators used in the

equations and boundary conditions:

d(-) - d(.) dC _ 1 d(o)
dx dC dx 2L€ dC

(4.43)
d(.)_ - 1 d"(')

dxn (2Lcr d C"

Though the time coordinate plays a relatively minor role in this problem because

a sinusoidal solution is assumed, a non-dimensional form may be used. The non-

dimensional time changes the size of the natural frequency that appears in the

characteristic equation, which changes the spacing of the pj eigenvalues. The non-

dimensional time coordinate tau (r) is defined by the following expression:
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• =kQ~t,[ =I -__- - _DF D (4.D)

mL m, (2 Le M 4

Note that Q, is a parameter with units of frequency and k is an arbitrary constant that may

be used to vary the spacing of the eigenvalues. The use of non-dimensional time T in the

assumed form of the solution generates a scaled frequency 0,:

exp(i 0t) = exp[ exp(iogr) (4.45)

where

_ Q _ 0M 2 (2Lc)2 (4.46)
-k 0 o k

When written in terms of non-dimensional spatial and temporal variables, the differential

equation for the mth segment has the following form :

(6~)) _ 4_[k + [kwf(2.)[k w1, (4.47)

The boundary conditions may also be written in terms of the non-dimensional

variables. The non-dimensional expressions that are proportional to total moment MT

and total shear VT are:
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Mr -w"" - g(2L,) 2(1+Y) w" - [koaf (4.48)

VT Kom~5 - g(2L )2(1+Y) w"' - Q [ 4W/ (4.49)

Equations (4.48) and (4.49) are used to enforce continuity of the beam at the

inter-segment boundaries. They are also used to identify a beam end condition that is free

of applied moment or shear stress. The non-dimensional form of the equation that

specifies that u' must be zero at the free ends of the constraining layer has the following

form:

w" -gY(2L, w - W = 0 (4.50)

Now that the differential equation and the boundary conditions have been identified in

their non-dimensional form, the form of the solution can be assumed and the boundary

condition matrix can be assembled.

Form of the Assumed Solution. A good choice of assumed solution simplifies the

assembly of the boundary condition matrix. Recall that the value of ý on the left hand

side (LHS) of the mth segment is ý--m-l, while the value of C on the right hand side
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(RHS) of the segment =--m. Consider a solution over the mth segment that has the

following form:

= J. AJ. 6 (.,-) XqPJ (C-m+.)I (45)

Note that the index of the A coefficients range from I to 6M in this form of the solution.

At the two end points of the segment, the assumed solution for the mth segment reduces

to a particularly simple form:

LAS w (4.52)

RHS w. = r.,A.., exp(pj)

By substituting Equation (4.51) into the non-dimensionalized differential equation, the

following result is obtained:

E6.j IAj.(_,) exp[ pj (C-~)

(4.53)
[P-g(2LC)2(1+Y) p4 -[-"-fp+ ( j=
Pi -

Because the characteristic equation (the large expression in brackets) is identical for all

segments, the same six p, eigenvalues are used in the solution for all segments.

Assembly of the Boundary Condition Matrix. Now consider the form of the boundary

conditions for a beam with cantilever end conditions and M segments. The fixed root of

the beam is located at C--O, and the boundary conditions may be written as:
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W1(C=0) -i 0 (4.54)

These may be written in matrix form as (BCroot I (A J)= (0), defined as:

Al

A2

[1 P2 P3 AP5PP6] A4 045

As

A6

At the free end of the cantilever beam, 1=M and both the total moment and shear

equal zero. The appropriate boundary conditions can ke found by substituting the

assumed solution into the expressions for MT and VT in Equations (4.48) and (4.49), then

setting them equal to zero. The equations can be written in matrix form as

[BCtip] (AM) 01:

A•. 5

4ý2 40 '4 '5 06 A 6- (.6I,4iý1 P2*2 P3'03 P4404 p5,ts p6,06 A 101

where
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Pi (4.57)

Because both the moment and u' are zero at the tip for this problem, the moment free

boundary condition can be written as w" = 0. For this case, the matrix in Equation

(4.56) becomes:

1 p e2 P 32e 2 2p 2 lKPI4 p2 p3 e p ep' pe p 6 je (4.58)

P 24P2 P3 )3 P4404 P54 5 P6406

For each segment, conditions of continuity must be enforced, as well as the

requirement that u'=O. Consider the position ý=m, which defines the interface between

segments m and m+l. The expressions defining the continuity of the displacement w, the

slope w' and the moment w" have the following form:

waJs w1:a••j• j6 {,eI ]E~6 A÷, (4.59)

W" , ss= w M s aJ.1 pj AJ-6( 0,,- = J61 Pj AJ÷ 6 , (4.61)

W11'.s .= W11t E •6x p2 Aj6s_) E•,= 6i p2Aj (4.61)

Recall that the expression representing total shear in the beam is:
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Vr .w(I - g(2L,9(l+Y) WI"t -[kflf w/ (4.62)

Shear continuity must be enforced, but because the requirement that w' must be

continuous across the cut has already been imposed in Equation (4.60), w' and its

argument may be dropped when using Equation (4.62) to impose continuity. When the

assumed solution is substituted into the remainder of Equation (4.62), the shear continuity

boundary condition becomes:

VT N m = V T j + M

E.6 [p - g(2L )2 (1+Y)pj? ] A,+ 6,(.,) e"'I (4.63)

= Ij [" g(2L 9 (I1+Y)p3 ] Aj+6,

This may be written in a more compact form as :

E6 iJ ePJ Aj+6(,l) E 61 j, Aj. 61  (4.64)

where

*j= [p 5 _ g(2Lc)2 (I+Y)p 3 ] (4.65)

The four boundary conditions may be written as [Continuity] (A ,.Am+. }T=0}):
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A6 ,-s

A6.-4

e"9 ePl eh .. e'Ii 1.. - A64 [0
Pie" p2 eh P3e' -• P6 e"' I P2 - 2 P6 ... _1, (4.66)

*1e P *2e" *,eh . * 6 e" I -*1 -*2 *6 A6n2 t

Note that the matrix portion of this condition contains no dependence on m, the segment

being considered.

Now consider the equation that specifies that u'--0 at the cut ends of the

constraining layers. By substituting the assumed solution into Equation (4.50), the

following matrix equation [u prime] (A.)=(0) may be found for the mth segment:

A6m-4

XI X X3 X4  X5 X6 1 6--3 0 (.7

e XI X e' X3 e X4 e"X5 e X6 . 6 joj

where
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X 4 2(4.68)

The matrices defined in Equations (4.66) and (4.67) are identical for all segments,

which simplifies the assembly of the boundary condition matrix for the full system. The

full set of boundary conditions may be written as [BC_...]{A,,}={(O), where

(A•})=(A,A 2,A3, ... A.} and [BC..,j has the following form:

[ BeCroot] 0 0 0 . . . 0 0

[uprime] 0 0 0 . . . 0 0

[-Continuity-] 0 0 . 0 0

0 [uprime] 0 0 . 0 0

0 [-Continuity-] 0 . . . 0 0 (4.69)

.. . . . [uprimeJ 0

0 0 0 0 . [-Continuity -]

0 0 0 0 . . 0 [uprime]

o 0 0 0 . . . 0 [ BCp ]

Note that matrices [BCroot 1, [BCtip ], [Continuity], and [uprime] were defined in

Equations (4.55), (4.56), (4.58), and (4.66) respectively.

At this point the formulation of the problem is complete. The complex form of

G, is substituted into the boundary condition matrix, resulting in a matrix with a complex

determinant. The eigenvalues within the matrix are functions of the parameter W2. The
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unknown complex natural frequency is found by identifying the value of W• that produces

a matrix whose complex determinant has a modulus equal to zero.

The formulation developed in this chapter was used to find the complex natural

frequencies of a beam with six pairs of damping segments. A complete description of the

geometries that were considered and the results that were obtained is presented in the next

chapter, where they are compared with two approximate methods. The MatLab software

package (53) was used to process the problem. An initial estimate of the complex natural

frequency was obtained from the approximate methods discussed in the next chapter, then

the estimate was refined by iteratively seeking a minimum value of the modulus of the

determinant in the vicinity of the initial guess for Wt. The final value for a' was found

using the existing Matlab minimization algorithms, which would diverge unless the initial

guesses provided were very accurate.

It should be noted that obtaining a solution for the six segment problem was not

a trivial matter. Previous researchers such as Rao (76:271) and Cottle (14) reported

difficulties with obtaining a solution for the single segment configuration. The boundary

condition matrix is numerically ill-conditioned; i.e., it contains both very large and very

small terms in combinations that can not be corrected by standard matrix operations.

Many general purpose computer algorithms are ineffective when applied to a problem of

this nature. The author believes that there were three aspects of the problem formulation

that may have helped made it possible to obtain a solution. The size of the terms in the

boundary condition matrix was reduced by proper scaling of the non-dimensional

4.26



temporal and spatial variables. The boundary condition matrix was a banded matrix

consisting of repeating submatrices due to the choice of assumed solution. Finally, a very

good initial guess for the complex natural frequency was used as the starting point for the

iterative process. This initial guess was obtained from the Complex Rayleigh Quotient

method, which is described in the next chapter.
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V. The Complex Rayleigh Quotient

In this chapter, approximate methods that predict natural frequencies and damping

in structures are described, and the Complex Rayleigh Quotient (CRQ) is introduced. The

Complex Rayleigh Quotient is used in the analysis of structures whose components have

out of phase displacements. The approach produces an estimate of the complex natural

frequency for the system from a ratio of terms that are similar in form to Rayleigh's

Quotient. The terms in this ratio are developed using approximations to the complex

modes of the system. The system damping may be estimated from the ratio of imaginary

to real parts of the complex frequency.

The form of the Complex Rayleigh Quotient is first developed for general discrete

linear viscoelastic systems, and a two degree of freedom system is used to illustrate the

method. The form of the Complex Rayleigh Quotient is then considered for continuous

systems, and is illustrated using constrained layer damping treatments of various

configurations. For the case of segmented constrained layer damping treatments mounted

on a beam, the approximate mode shapes are developed using the "substrate assumption".

In this approach, the exact equations of the constraining layer are solved by

approximating the deflections of the damped structure by its corresponding undamped

mode shapes. The constraining layer solutions produce complex mode shapes when the

Correspondence Principle is invoked. The results using this approach are compared with
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the exact solution, which was obtained by following the procedure outlined in Chapter 4.

It is shown that for the configurations examined, the Complex Rayleigh Quotient

produces a better estimate of the loss factor for the first three modes than does the Modal

Strain Energy approach.

The Correspondence Principle

The development of the Complex Rayleigh Quotient requires use of the

Correspondence Principle, which identifies a correspondence between viscoelastic and

elastic problems. The principle as stated by Bland states:

"If the elastic solution for any dependent variable in a particular problem is
of the form f=Real[ f, e" ], and if the elastic moduli in f. are replaced by the
corresponding complex moduli to give f,., then the viscoelastic solution for that
variable in the corresponding problem is given by f=Real[ f•, e" ]."(9:67)

The Correspondence Principle allows tools developed for conservative systems to be used

in the analysis of damped systems. The corresponding elastic problem is formulated and

solved by using a real number to represent the modulus of a viscoelastic component.

Once the elastic solution is found, damping inherent in the viscoelastic material is

accounted for by using a complex modulus, which identifies the phase difference between

stress and strain in a material. Caution must be exercised, however, in the computation

of energies. Work must be computed using the product of a real force and a real

displacement, where the real force is the real part of the product of a complex modulus

and a complex strain.
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Rayleigh's Quotient

In classical undamped vibration analysis, a method used to find estimates of a

system's fundamental frequency is known as Rayleigh's Quotient. Rayleigh's Quotient

is based on Rayleigh's Principle, which states that for a conservative system vibrating at

a natural frequency, the maximum system kinetic energy is equal to the maximum

potential energy. For a more detailed treatment of this topic, see Reference (61:207).

Rayleigh's Quotient is obtained by setting expressions for maximum kinetic and

maximum strain energy equal to each other, then solving for the natural frequency, Q.

To formulate Rayleigh's Quotient for a general system consisting of N individual

components, estimates of the mode shape are used to identify the maximum kinetic

energies QT0 and maximum strain energies U, of each part of the system. For this

configuration, the form of Rayleigh's Quotient becomes:

a 2 i.M. Un (5.1)

The particular form of the kinetic and strain energies for both discrete and continuous

systems will be described in later sections. Rayleigh's Quotient is often used when an

estimate of fundamental frequency is desired and only a coarse estimate of the mode

shape is available. In such cases, the approximation to the frequency produced by

Rayleigh's Quotient provides an upper bound to the true fundamental frequency (61:207).
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The Con, Rayleigh Quotient (CRQ)

In this section, the Complex Rayleigh Quotient (CRQ) is introduced for the

analysis of damped discrete or continuous structures with complex mode shapes.

Complex mode shapes provide information on out of phase displacements for damped

systems. The resulting terms that correspond to the maximum kinetic and strain energies

in Rayleigh's Quotient for an -"'-:ic system are complex. In this chapter the Complex

Rayleigh Quotient is defined u, np.. nplex mode shapes for both discrete and continuous

systems.

The idea of using Rayleigh's Quotie;,t wih damped cystems was first proposed by

McIntyre and Woodhouse for orthotropic plates (54:209). In tilis work, McIntyre and

Woodhouse assumed that the imaginary portion of the complex moxdulus was much smaller

than its real part. They considered the strain energy terms within Rayleigh's Quotient, and

argued that the influence of the complex viscoelastic modulus on the mode shapes was

much smaller than the direct effect of the modulus in the expression for strain energy. As

a result, they used Rayleigh's Quotient to obtain a complex frequency by using real mode

shapes and the complex viscoelastic modulus in the expressions for strain energy. The real

mode shapes were found by replacing the complex viscoelastic modulus by its real part.

Others have used the approach for the analysis of plates and other damped systems

(55:1397, 62:K3-3, 102:187). These researchers have all used real mode shapes in their

formulation of Rayleigh's Quotient.
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The use of real mode shapes in a complex form of Rayleigh's Quotient was justified

by the assertion that the imaginary portion of the complex viscoelastic modulus is much

smaller than its real part. Though this may have been a good assumption for the problem

considered by McIntyre and Woodhouse (the analysis of the wooden top plates of violins),

this assumption is not appropriate for the case of structures with applied viscoelastic

damping treatments. For several viscoelastic materials used in damping treatments, the real

and imaginary portions of the complex modulus are equal in magnitude (87).

For the case of a viscoelastic system with complex mode shapes, the maximum

kinetic and strain energies in the individual components will occur at different times in the

cycle of vibration. As a result, the proper definition of strain energy and kinetic energy that

should be used in Rayleigh's Quotient is not immediately obvious. In the next few

sections, the appropriate expression will be developed for both discrete and continuous

systems through manipulation of the system equations of motion.

Using the Complex Rayleigh Quotient with Discrete Systems:

The form of the Complex Rayleigh Quotient for a discrete system may be developed

from the equations of motion. Before viscoelastic systems are considered, consider a N

degree of freedom linear elastic system represented by the following matrix equation:

(1) + KW•} -- 0 (5.2)

Here {R) is a vector of unknown real displacements that are functions of time, M is a
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diagonal real mass matrix, and K is a symmetric real stiffness matrix. A broad class of

elastic systems have equations of this form if the system coordinates are used to identify

displacements of masses in an inertial reference frame. If a solution is sought that has the

form ({)=(x)exp[ift], where (x) is a vector that is independent of time, the matrix

equation becomes:

0 2M {x} = K L (5.3)

Expressions for kinetic and strain energy can be obtained from the equations of motion by

multiplying both sides by 1/2 (x)T:

)2 f {x }M Ix} x'gK U) (5.4)
2 2

The left hand side of Equation (5.4) equals the maximum kinetic energy of the system,

while the right hand side equals the maximum strain energy of the system. Rayleigh's

Quotient is formulated by dividing both sides of Equation (5.4) by 1/2 x)}TMfx):

02 = { x TK WX (5.5)

{x FM {x)

Now consider how the problem changes for the corresponding linear viscoelastic

problem. For the linear viscoelastic problem, Ix) is a vector of complex displacements,

some elements of the K matrix are complex, and the natural frequency is complex. By

using astericks to denote the complex quantities, Equation (5.3) may be written in the

following form for the viscoelastic system:
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0' 2M (x) = K" 1'* (S.6)

It is desirable to obtain an equation for the viscoelastic problem similar to the energy

balance in Equation (5.4) by multiplying Equation (5.6) by some factor. If both sides of

Equation (5.6) are multiplied by one-half the conjugate of (x}•T , a term similar in spirit to

the maximum kinetic energy appears on the left hand side:

Q* I•-I f T F'M {"x - -- 'l{' (S.7)
2 

2

It should be stressed that the left hand side of Equation (5.7) is not precisely the kinetic

energy of the system. An expression for kinetic energy must be a positive real quantity,

but the left hand side of Equation (5.7) is complex due to the presence of W. The

expression (x*}T[M]{x") is a positive r'eal quantity, but it is associated with the sum of the

maximum kinetic energies of each displacement x., which do not occur simultaneously

because of phase differences in the individual displacements. Despite the fact that

Equation (5.7) does not simply equate maximum kinetic and potential energies, it can be

manipulated into a form defined to be the Complex Rayleigh Quotient for discrete systems:

S.2 { -T K{x} (S.8)
{ x'V"M{x'}

If the exact value for {x') is used in Equation (5.8), it provides the exact value for the

complex natural frequency. If an approximation to the vector {x*) is ubed in Equation
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(5.8), it may also be used to find an estimate of the complex natural frequency in the same

way Rayleigh's Quotient is used in elastic systems.

The complex frequency obtained from the Complex Rayleigh Quotient can be used

to determine the damping of the system. The time dependence of the system has the form

exp[iflt], so a complex frequency of the form W = Ou + i 11r implies an oscillatory

component of the form exp[i OR t] and a decaying component of the form exp[- R t]. This

decaying component is often written as exp[-ý D. t], where C is defined as the fraction of

critical damping and 1-4 is the undamped natural frequency of the system. This provides

the relation Or= Co.. The relation between the damped natural frequency and the

undamped natural frequency for a system with linear viscous damping is OR = (1-402)

By manipulating these terms, relationships between the complex natural frequency and

damping may be found:

01 _ m[1 _ 2C(1 _-2) (5.9)
OR VI-_--2 Re[()"2] 1-2C2

The second expression in Equation (5.9) can be used to identify the damping from

the complex frequency once the real and imaginary parts of 0- are defined from the

Complex Rayleigh Quotient.

To define the real and imaginary parts of jj" 2, it is helpful to break the complex

stiffness matrix K" into its real and imaginary parts by defining K" = K, + i K1, where KR

and K, are symmetric real matrices. It is also helpful to show that if [A] is a symmetric
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real NxN matrix and (x'} is a complex Nxl vector, then (x.)T[AJfx°) is a real number.

Because [A] is symmetric, A1,=A,, and the product [A]{x'} may be written in the following

form:

All X1 +A12  + ... A•

[A]{x'} =Au j' 1"A2, x¾+A.22 ;. + .'. . (5.10)

ANm xt +A N2 x2 + •••A'%W XN

The product {x})T[A] (x*) becomes:

Ix}[ýA]{x'} = x* Ali XJ

I- x 4 4, l+A1 2 X-:+ -. A1N i;)

+; 4 21 x+A22 x;+ .. A2m x;) (.1

+ x,,A xi*+A,,N 2*+ AN ;

Because [Al is symmetric with real elements, it may be seen from Equation (5.11) that

(x*}T[A] (x'l is the sum of individual terms that are real numbers. Let x<*= a + ib and xm*=

c + id. The following terms are real numbers:

xn* = a2 +b2 , x* x +x, x.*= 2ac+2bd (5.12)

Each term in Equation (5.11) has one of these forms, so the quantity (x})Tr[A{Ix"} is a real

number. This result can be used to manipulate the numerator of the right hand side of

Equation (5.8). The real and imaginary parts of the numerator are easily separated:
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I{ IrKsx*i- 1{xP)r[K,,+ iK, ]fx*)

(P Ir K, W) + I( T) T K,{W1

The denominator of the right hand side of Equation (5.8) is real since M is a diagonal real

matrix. The ratio of imaginary to real parts of the square of the complex frequency

becomes:

IM[OJ_ 2C(1 -C2) I { T K,{Ux1 (5.14)

Re[X"] I-2C2  {I. IK,'X'•

If the overall damping of the system is small, then the loss factor becomes:

n • 1rim["] {x '} T K{x'}
2 C = ( (5.15)

Re[O] f I K Rx *'

The real part of the complex natural frequency is equal to the frequency of vibration for

the damped system, so both frequency and damping predictions are provided by the

Complex Rayleigh Quotient.

CRQ Form of Loss Factor: Compatibility with Ungar and Kerwin

In this section, it is shown that the loss factor produced by the Complex Rayleigh

Quotient has the same form as the loss factor developed by Ungar and Kerwin for a system

of N viscoelastic springs (97:954). Suppose the complex stiffness of the nth spring is

defined as K= KR. + i K1. and the complex elongation of the nth spring is defined as
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AX,*. As with complex displacements, the complex nature of the elongation is an artifice

that captures phase information. The actual elongation is the real part of the complex

quantity.

For this system, Ungar and Kerwin identified the following form for the loss factor:

11 = (5.16)

where D. is the energy dissipated by the nth spring and W. is the energy stored in an elastic

spring with stiffness KR. with elongation IAX.'I:

D =l7 K,8 lAX:, 2  (5.17)

W = I R A IAX' 12  (S.18)

By substituting the expression for D. and W. into Equation (5.16), the system loss factor

may be written as:

= Y . 1A&X,1 2  
(5.19)

EKR I~y A X8*1

One notable aspect of this result is that the W~terms are defined in terms of their individual

amplitudes IAX," I, though in general the different values of AX" will not be in phase with

each other. This expression for loss factor is equivalent to Equation (5.15), which was

developed from the Complex Rayleigh Quotient analysis for small damping. The terms

5.11



(x*'}(KJ(x") and (x} T [K](x") in Equation (5.15) are equal to the magnitudes of the

spring elongation multiplied by either the real or the imaginary part of the spring

stiffnesses. This will be illustrated later in the chapter using a two degree-of-freedom

system.

Example: 2 Degree of Freedom System

A simple example using the Complex Rayleigh Quotient with a discrete system

should prove helpful in illustrating the concepts before continuous systems are considered.

Consider the two degree of system illustrated in Figure 5.1, which consists of a one degree

of freedom elastic system with mass in and spring stiffness k, with a secondary mass m

attached by a viscoelastic spring with stiffness k2 - .k + i ki. (For this example, the

asterisks will be dropped from complex numbers for convenience).

Figure 5.1. Two Degree of Freedom System
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The solutions to the equations are developed using the Correspondence Principle. If

harmonic time dependence is assumed, the equations of motion for the system may be

written in the following form:

[k1k 2 ]M} 2 0 (5.20)

A non-trivial solution to the eigenvalue problem exists only for values of fL that satisfy

the characteristic equation:

i _ 2 k+2kz+ k-k = 0 (5.21)m m

The roots of the characteristic equation yield the two natural frequencies of the system:

____2 ____ 2+ k+, + -+)2 k k 2  (5.22)

2mi(2m M2 2  2m ý 2m Mn2

The scale of the mode shapes is arbitrary. Define the displacement of the primary

mass as X,=1 for both frequencies. The displacement of the second mass corresponding to

frequencies 0, and Q may be found by substituting X,=1 and the natural frequency into

Equation (5.20). If the complex mode shape corresponding to the jth frequency is defined

as (X1, X2}=( 1, X2j), the X2, terms have the following form:
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÷ =-.+ ,+ 1+- -(

Now that the formulation of the exact solution is complete, consider the form that

the Complex Rayleigh Quotient as defined in Equation (5.8) would take for this problem.

Let the mode shape (or an approximation to the mode shape) be defined as X:--XI, X2 ).

The Complex Rayleigh Quotient becomes:

2 (X K +71 X2_
0 - r-T K X -(k, 4 2)1X1-k(1 X, 1X 2)+2 X

XT MX m(IXI12+IX212) (5.24)
kMIX• 12 + k2IXl-X21"

For the viscoelastic problem, the spring constant k2 in Equation (5.24) is complex. If the

true mode shapes are used in Equation (5.24), the square of the natural frequency that

results is identical to the expression defined in Equation (5.22). If an approximation to the

true mode shape is substituted into Equation (5.24), then the expression produces an

approximation to the natural frequency.

For a lightly damped system, the loss factor may be calculated by using Equation

(5.15):

1Imtk ]Xl=-X212  (5.25)
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The equations above were used in a case study that examined the relative

effectiveness of using real and complex mode shapes in Equation (5.24) to predict the

fundamental frequency of the system. Equation (5.23) was used to obtain two real

approximations to the actual complex mode shape. The first real mode shape was obtained

by replacing the complex stiffness k2 by its real part, an approach analogous to the method

used by McIntyre and Woodhouse in their complex form of Rayleigh's Quotient. The

second real mode shape was obtained by replacing the complex stiffness k2 by its modulus.

The predicted frequencies that resulted from substituting the real mode shapes into Equation

(5.24) were compared with the results from substituting the true complex mode shapes

ca!culated from Equation (5.23). Loss factors were obtained from the frequencies by using

small damping approximations (Equation (5.15)).

Three configurations were considered, all with spring constant k, = 1 and varying

values of the complex portion of the spring constant k2. The three configurations had

increasing amounts of damping, with k2 equal to l+.li, 1+.5i, and 1+li for the three cases.

A comparison of the natural frequencies for the three configurations may be seen in Table

5.1.
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TABLE 5.1. 2 Degree of Freedom System: Fundamental Frequency and Mode Shape

CONFIGURATION 1: k2= '+.' 1i

mode shape mode shape mode shape
using k2 * using Ik2 *1 using Re[k2*]

mode shape (1.00, 1.61-.0715 i) (1, 1.61) (1, 1.62)
fl, .619+.00847 i .619+.00847 i .618+.00854 i
T .0274 .0274 .0276

error in il, n. a. .06% .7%

CONFIGURATION 2: k2=1+.5 i
mode shape mode shape mode shape
using k2 * using Ik2 *1 using Re[k 2*]

mode shape (1.00, 1.46 -.275 i} (1.00, 1.54) (1.00, 1.62}
! .634+.0354 i .620+.0351 i .620+.0426 i
11 .112 .114 .138
error in 71, n. a. 1.6% 23%

CONFIGURATION 3: k2=1+li
mode shape mode shape mode shape
using k2 * using Ik2 *1 using Re[k 2*]

mode shape (1, 1.25- .312i 1 [1, 1.41) 1, 1.62)
Q, .662+.0457 i .627+.0457i .624+.00846 i
T11 .139 .146 .276
error in i1, n.a. 5.6% 99%
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It may be seen from Table 5.1 that the damping predictions obtained from the real

mode shapes become worse as the complex portion of the stiffness of k2 increases. It is

interesting to note that when the viscoelastic spring has a significant imaginary component,

the predictions may be improved significantly by using the modulus of the complex spring

stiffness instead of the real part of the stiffness.

Complex Rayleigh Quotient with Continuous Systems

The Complex Rayleigh Quotient can be developed for one-dimensional continuous

systems using an approach similar to that used for discrete systems. Although the mode

shapes for continuous systems consist of one or more complex valued functions instead of

complex vectors, the two types of problems have some common aspects. In this section

a general approach to using the Complex Rayleigh Quotient for continuous linear systems

will be described, then illustrated using the example of a constraining layer on a bar.

The general form of the Complex Rayleigh Quotient for continuous systems is most

easily derived if the system of equations are presented in matrix operator format. Before

a viscoelastic system is examined, consider its corresponding elastic system. Suppose the

equations of motion have the following form:

02 M{u} = L{ul (5.26)

The form of the equations of motion for the continuous system (Equation (5.26)) and the

equations of motion for the discrete system (Equation (5.6)) are similar. The vector (u)
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contains the system mode shapes, which are functions of the independent variable x. The

matrices M and L are symmetric linear operators. For the elastic system of equations

written in operator format, energy terms are formed by multiplying both sides of Equation

(5.26) by 1/2 uT and integrating over the length of the beam:

-a2 fL {uTM{u -- dx = {uL{u ( )

The left hand side of Equation (5.27) is equal to the maximum kinetic energy of the system

and the right hand side is equal to the maximum potential energy of the system. Rayleigh's

Quotient is found by solving for !22.

In the viscoelastic problem, £22, u, and the elements of the linear operator L are

complex. To obtain the complex terms that correspond to the maximum kinetic and

potential energies, both sides of the equations of motion are multiplied by 1/2 UT and

integrated over the length of the structure:

I {~ IjUVjMjU} dX L .fL {tu12 l~ dx (5.28)

As in the discrete problem, the left hand side of Equation (5.28) is not the maximum kinetic

energy of the system because £2 is a complex number and the maximum displacements

associated with each value of x do not occur at the same moment in time. By manipulating

Equation (5.28), the general expression for the Complex Rayleigh Quotient may be obtained

for continuous systems:

5.18



L dv

Figure 5.2. Bar in Extension with Constraining Layer

The development for a general continuous system can be illustrated for the case of

a rectangular bar covered with a constrained layer damping treatment (Figure 5.2). Let fi1 ,

be the extensional displacement of the bar and let i0• be the extensional displacement of the

cons training layer, where both displacements are functions of x and t. After the seperation

of variables has been accomplished, let ub and u• denote the corresponding mode shapes,

which are functions of x. Let both the bar and the damping layers have unit width. The

equations of motion for the system are developed using the Correspondence Principle. For

the corresponding elastic system, the potential energy in the bar, constraining layer, and
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viscoelastic layer may be written as:

Ub = L [4ajlC (5.)2. -fo Et

,L f E a~!d (5.31)

2o= fo
uy=4. fL T a - a•) dx (5.32)

If the mass of the viscoelastic layer is negligible compared to the bar and constraining

layers, the total kinetic energy of the system may be written as:

a 2 foa L (5.33)
2=J~~ ( atiL .

By invoking Hamilton's Principle, the kinetic and potential energies may be used to develop

the following coupled equations of motion:

Eb t-V - - _(ab - + = &2
t, (S.34)

,ax2  t,, Ca2

For Gi= u, exp[i !Qt] and "b= Ub exp[i 1t], these equations become:
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d2u,, Gv
Eb t,-,'- - - u) -b02 p, b'2

dx2 y P~b~b(5.3S)
d2uc G,

Ec t, !---u + Gv (ub - a - l pJ u
cdx2 ty C 

1
U

These equations may be written in operator matrix form

02 Mu} = L{ul (5.36)

where u = I ub, ud}T is a vector of functions, and M and L represent linear operators

written in matrix form:

P b 0 ~pbtb D- '2t ot

M = , L = - P. (5.37)

0 PCt,1G, pctcDP2- C
Iv '

In the L operator matrix, D denotes a derivative with respect to x. The boundary conditions

of the problem have the following form:

dub

U() --0, du(L) dX 0 (5.38)clU x-o dx duc

I.dx] x-L

Now consider the corresponding viscoelastic problem, where G, u, and Q are

complex. If an estimate of u is available, the complex terms that correspond to the

potential and kinetic energies of the system may be calculated. At first glance, the

numerator of the Complex Rayleigh Quotient does not look like the familiar expression for
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potential energy, but the original form of the potential energy can be retrieved by

integrating by parts. Consider the numerator of the Complex Rayleigh Quotient for the

constraining layer in axial extension:

t !dub G( _

f uGt

c dxc2 tv- (Mb U)jdI

By integrating by parts and using the boundary conditions provided in Equation (5.38) to

set the boundary terms equal to zero, the following expressions result:

f iT L udx f Eb tb •idubdx fE cLcdcd
dxdx dx dx

(5.40)

f f G:.(ub-u) (Ub- u) dx

Recall that if f(x) is an arbitrary complex valued function, the function g(x)= f(x)f(x) is

equal to the square of the magnitude of f at each value of x. From Equation (5.40) it can

be seen that the terms used for strain energy in the Complex Rayleigh Quotient have the

same form as the strain energy expressions of the corresponding elastic problem, except that

the real quadratic strain terms in the elastic problem are replaced by the square of the

magnitude of the complex strains obtained by using complex mode shapes.
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The denominator of the Complex Rayleigh Quotient has the following form for the

bar:

f ,-r M u dx f[ p, t, , Pc U, I- dc x (5.41)

By substituting Equations (5.40) and (5.41) into Equation (5.29), the Complex Rayleigh

Quotient is formed for the damped bar. Equation (5.29) produces the exact value of the

complex frequency if the exact mode shapes are used in Equations (5.40) and (5.41); if an

approximation to the mode shapes are used, Equation (5.29) produces an approximation of

the complex frequency.

Notice that both the kinetic energy and potential energy terms used to form the

Complex Rayleigh Quotient have the same form as the corresponding elastic problem,

except that the real quadratic strain and displacement terms in the elastic problem are

replaced by the square of the magnitudes of the complex strains and displacements. This

was also true for the discrete problems discussed in the previous section.

Example of Complex Rayleigh Quotient: Constraining Layer on a Beam.

In this section the Complex Rayleigh Quotient is used to obtain an estimate for the

complex natural frequency of the damped rectangular beam described in Chapter 4. In

Chapter 4, equations of motion were developed for both continuous and segmented

constraining layers. In this section, the form of the strain energies are developed for use

in the Complex Rayleigh Quotient, then the solutions are identified for use in the strain
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energy expressions. Similarities between the loss factors obtained from the Complex

Rayleigh Quotient and the Modal Strain Energy method will also be identified. Some of

the definitions and equations identified in Chapter 4 will be repeated in this section to assist

the reader.

Form of Displacements and Strain Energies. The two displacements identified in the

problem are the transverse displacement w of the beam and constraining layers, and the

axial displacement u of the constraining layers. In the exact solution developed in Chapter

4, both u and w are complex valued functions. In the approximate solution used in the

Complex Rayleigh Quotient, it will be assumed that the displacement w can be

approximated by the undamped mode shapes of the beam. As a result, a real valued

function for w is used in the kinetic and strain energies, while the function for u is

complex.

The complex solution for the displacement u results in a complex extensional strain,

u", and a complex viscoelastic shear strain, Y. The strain energies used in the Complex

Rayleigh associated with the damping layers are defined using the square of the moduli of

the complex strains:

= ! IfffEj 'y W)Y dvol, Y= !fffG:'Y-Y dvol (5.42)

If the viscoelastic shear modulus is defined as G,= G,,' (l+i r,), the strain energy

associated with the viscoelastic shear strain is complex and has the form U;,= U¥'(l+i 11,).
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The combined strain energy of the beam and the constraining layers due to bending depend

on w", which is a real function:

Ub= -' LD,(W dz Do = EbIs + 2E Ic (5.43)

The equivalent system kinetic energy has the following form:

2 fo 2
T" = (09) .• fLin dz, in,=P,,b+2pvA,+2 pCAC (5.44)

The form of the Complex Rayleigh Quotient for the damped beam becomes:

I mr w 2 dz

-2 fo,

Solutions for u and y for Segmented Constraining Layers. An approximate solution for

the segmented constraining layer geometry described in Chapter 4 is found by assuming

that the transverse displacement w of the damped beam may be approximated by its

undamped mode shape. Consider the case of a beam covered with M pairs of segments,

each of length 2L,. Let z,= (2m- 1)L4 identify the z coordinate at the center of the mth

segment, and let z = z.= L , identify its boundaries. Define * to be the undamped mode

shape that is used to approximate the actual deflection of the beam. For a Bernoulli-Euler

beam, *, has the following form:

0 = Acos(pz) + Bsin(pz) + Ccosh(pz) + Dsinh(pz) (5.46)
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The constraining layer equation has the same form for each segment, and the boundary

conditions specify that the strain in the constraining layer is zero at the cut ends of each

segment:

w'U=g* yeW Uu Al = 0 (5.47)

where

' * Yo = hb + 2h, + he (5.48)
4h, hcE e

The "m" subscript on u in Equation (5.47) identifies the displacement defined over the

mth segment. Note that Equation (5.47) has the same form as the differential equation that

describes a constraining layer mounted on a substrate (Equation (3.5)).

By substituting *, into Equation (5.47), the particular solution for u may be found-

up.= asin(pz) +bcos(pz) +csinh(pz) +dcosh(pz) (5.49)

a gypA b- gypB C = gy'pC d= gyopD (5.50)

p 2 +g p +g p 2 -g p g

The first derivative of the particular solution is:

u,/ = a cos(pz) + b, sin(pz) + c cosh(pz) + di sinh(pz) (5.51)

where
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a, =Y1 2 A b g 8YO2B 8Y_ _C d gyOpD (5.52)
p2 p2 12_ 2-8

The homogeneous solution for the mth segment may be written as:

Uk = PM, cosh(Fg-(z-z.)) - Q.sinhqJg (z-z,,)), ze(z..-L,, z.+L) (S-53)

where

sin(pL .)(-assin(pz.) +bicos(pz.)) +sinh(pL )(csinh(pz ) +d cosh(pz.))
rV/g sinh(ýfgL,) (5.54)

cos(p L,)(alcos(pz,,.) +b sin(pz,,)) + cosh(pL,)(c cosh(pz,,) +d sinh(pz,))

rg coshWv~gLc)

The solution for u is the sum of homogeneous and particular solutions defined over each

segment:

u ru (5.55)

where

SUh. + u,., z (Z.-Lc, z. L+) (5.56)

0 , otherwise

The shear strain y in the viscoelastic layer must be defined piecewise over each segment:
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SU. + Y.*'
.. ~ e(z.,-L~, , (.8

0 otherwise

Now that the solution is known, it may be used to obtain both real and complex

mode shapes, depending on whether a real or complex G, is used in the solution. The

complex mode shapes can be used in the Complex Rayleigh Quotient defined in Equation

(5.45).

Measures of Damping from the Complex Natural Frequency:

The system damping can be obtained from the complex frequency defined by the

Complex Rayleigh Quotient. For a lightly damped system, Equation (5.15) may be used

to identify the loss factor.

IIc.• (5.59)

Re[ 0ýQJ

The real and imaginary parts of fWcRQ may be identified by using the expression U" =

U7'(l+i 1j,) with Equation (5.45):
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Re ~ ~ ~ ~ -X U+ e+Z4 |f U Ur+U

'fL M w2 AfoL Mw 2ifL dz • m, w2 dz
2f 2 f(S.60)

f Lm W dz M Wo2m dz

The loss factor can be written as:

I rQU (S.61)
UY b + C

It is interesting to note that if real mode shapes instead of complex mode shapes are

used in the Complex Rayleigh Quotient, the loss factor defined in Equation (5.61) is

equivalent to that obtained by the Modal Strain Energy (MSE) method, a well known

approximation approach (39:71, 40:1284). The Modal Strain Energy method was presented

for use with structures that contain viscoelastic materials, including applied viscoelastic

damping treatments. In this method, the mode shapes of a structure are found as if all parts

of the system are purely elastic, an approach which produces mode shapes that are real

valued functions. These real mode shapes are used to calculate a value for the

corresponding damped system. Suppose the system has J elastic components and K

viscoelastic components, and il represents the loss factor of the kth viscoelastic material.

If U, and U. are the strain energies calculated from the real mode shapes for the elastic and

viscoelastic portions of the structure, then an estimate of the structural damping for the
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corresponding damped mode may be found from the following expression:

1 1 MSE =.'1 V (5.62)
M" n Uk + (4.,U

For the beam with a segmented damping treatment, the Modal Strain Energy approach

would predict a loss factor of the following form:

"%USE = (5.63)

where Ub is defined in Equation (5.43) and the strain energies of the constraining layer and

viscoelastic layer are defined using the real mode shapes:

Uc,,= -fffEc(u'9dvo1, u,= fffG'Y2 dvol (S.64)

The values for u' and y in Equation (5.64) are obtained from Equations (5.55) and (5.58)

if a real value is used for G, in those expressions.

Note that the loss factors from the Complex Rayleigh Quotient (Equation (5.61)) and

the Modal Strain Energy approach ( Equation (5.63) ) have the same form. The difference

in the two methods is that the strain energy terms UY' and U, used in the Complex

Rayleigh Quotient method are derived from complex solutions for u and contain integrals

of the square of the magnitudes of complex strains. The strain energy terms contained in

the Modal Strain Energy method contain the square of the real strains. If real mode shapes
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are used in the Complex Rayleigh Quotient and the damping is small, the analysis produces

a loss factor identical to that obtained using the Modal Strain Energy method.

The real strain energy expressions used in the Modal Strain Energy method may also

be used to get a real estimate of the natural frequency using Rayleigh's Quotient:

Ub +Uc,+ U= (5.65)
A Lm W dz

Estimates of damping and natural frequency using Equations (5.63) and (5.65) will be

compared with estimates using the complex modes later in this chapter.

In summary, the Complex Rayleigh Quotient was used in the analysis of a beam

with a segmented constrained layer damping treatment. Approximations to the

displacements and strains of the damping layers were found by approximating the

displacement of the main structure by its undamped mode shape, then solving the exact

constraining layer equations of motion. The only approximation associated with this solution

is that the constraining layer will have some effect on the mode shapes of the main beam

that is not taken into account using this approach. The complex strains and displacements

are used in expressions for strain energy and kinetic energy that are substituted into the

Complex Rayleigh Quotient. The system loss factor may be obtained from the ratio of

imaginary to real parts of the ratio, and may be written in a form similar to that obtained

by the Modal Strain Energy approach.
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Comparison of Approximate Estimates with Exact Results.

In this section the Complex Rayleigh Quotient is used to predict the natural

frequencies and loss factors of a thin 91.44 cm (36") steel cantilever beam with six 15.24

cm (6") damping segments of equal length applied to both faces of the beam. Both the

beam and the damping layers have unit width. The swain energies are formulated using the

complex mode shapes obtained by substituting the complex viscoelastic modulus into the

solutions developed in the previous section. These results are compared with the exact

solutions, which are obtained by using the approach described in Chapter 4. The Complex

Rayleigh Quotient results are also compared with estimates of natural frequency and loss

factor obtained by using real mode shapes with the Modal Strain Energy method and the

Rayleigh's Quotient. Two different approaches are used to obtain real mode shapes from

the solutions identified in the previous section. One set of mode shapes is developed by

substituting the real part of G," into the solutions defined in the previous section, while the

other set is obtained by substituting the modulus of G," in the same solutions.

Predictions were obtained for three beam geometries of different thicknesses. The

thicknesses of the beam layers for the three configurations are identified in Table 5.2.

(Recall that the thicknesses of the beam, constraining layer, and viscoelastic layer are 2h1,

2h., and 2h, respectively.) The percent of the cross sectional area of the composite beam

that consists of the main beam is 78% for configuration 1, 58% for configuration 2 and

42% for configuration 3, so the effect of the damping treatment increases with configuration

number. The beam extensional modulus is Eb = 20.7 x 1010 pascals (30,000,000 lb/in2 ) and

5.32



the beam density is Pb = 7.01 x 1o0 kg/m 3 (.000735 lb-sec 2/'m4). The constraining layer has

an extensional modulus of Ee 6.89 x 101 pascals (10,000,000 lb/i 2 ) and a density of p,=

2.34 x 103 kg/m3 (.000245 lb-sec 2/0n4 ). The viscoelastic layer has a density of p,= 982

kg/I 3 (.000103 lb-sec2/i'm) and a shear modulus of G'= G,(l+.5i) where 3,,' = 2.41 x 10'

pascals (35 lb/i 2). For the cases studied, G,, and il, are held constant with frequency. The

damping treatment geometry is similar to some of the prefabricated damping treatments

made by 3M that consist of a layer of aluminum with a thin self-adhesive viscoelastic layer.

The ISD- 112 viscoelastic material manufactured by 3M has similar viscoelastic properties

for frequencies below 10 hertz at room temperature, although the properties have a

temperature and frequency dependence that is not modelled in this study. The natural

frequencies and damping predicted for the three configurations are seen in Tables 5.3, 5.4,

and 5.5. Quantities calculated using the Rayleigh's Quotient, the Complex Rayleigh

Quotient, and the Modal Strain Energy method are denoted by "RQ", "CRQ", and "MSE"

respectively. The loss factors obtained from the Complex Rayleigh Quotient were

calculated using small damping approximations (Equation (5.15)).

Table 5.2. Segmented Beam Thicknesses for Configurations 1, 2, and 3

Beam ( 2 hb) Constraining Layer ( 2h) Viscoelastic Layer (2h,)

Configuration 1 1.3 mm (.050") .13 mm (.005") .051 mm (.002")
Configuration 2 0.50 mnm (.020") .13 mm (.005") .051 mm (.002")
Configuration 3 0.25 mm (.010") .13 mm (.005") .051 mnm (.002")
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Table 53 Predicted Frequencies and Loss Factors for Configuraton 1

Ouantitv Method Mode I Mode 2 Mode 3

frequency exact 8.1155+.09416 i 50.763+.5820 i 141.776+1.6042 i

loss factor exact .02321 .02293 .02263

frequency RQ (Re[G,*I) 8.1002 50.675 141.56

loss factor MSE (Re[G,*]) .02595 .02562 .02522

frequency RQ ( IG*I ) 8.124 50.82 141.96

loss factor MSE ( IG,*I) .02555 .025620 .02498

frequency CRQ 8.1267+.09759 i 50.836 +.6040 i 141.99+1.6664 i

loss factor CRQ .02402 .02376 .02347

5.34



Table 5.4 Predicted Frequencies and Loss Factors for Configuration 2

Quantity Method Mode I Mode 2 Mode 3

frequency exact 3.5316 +.1085 i 22.003 +.672 i 61.14+1.86 i

loss factor exact .06145 .06109 .06092

frequency RQ (Re[G,*]) 3.544 22.102 61.47

loss factor MSE (Re[G,*]) .07387 .07339 .07289

frequency RQ ( IG,*l ) 3.573 22.28 61.97

loss factor MSE ( IG,*I) .07196 .07167 .07144

frequency CRQ 3.5785 +.1208 i 22.3105 +.7499 i 62.03 +2.079 i

loss factor CRQ .06750 .06723 .0670
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Table 5.5 Predicted Frequencies and Loss Factors for Configuration 3

Ouantity Method Mode I Mode 2 Mode 3

frequency exact 2.133+.113 i 13.205+.7053 i 36.43+1.973 i

loss factor exact .106 .1068 .1083

frequency RQ (Re[G,*]) 2.230 13.85 38.28

loss factor MSE (Re[G,*]) .1378 .1380 .1384

frequency RQ ( IG,*I ) 2.264 14.06 38.87

loss factor MSE ( IG,*I ) .1320 .1329 .1340

frequency CRQ 2.272+. 1404 i 14.10 +.8757 i 38.98+2.442 i

loss factor CRQ .1236 .1241 .1253
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In Table 5.6. the undamped frequencies t)4 of the bare cantilever beam for the three

configurations are given for the first three modes, and the percent shift in the natural

frequency caused by the damping treatment is shown. The undamped frequencies have the

following form:

a', = k2  bb4
SPb Ab L

where k = 1.875, 4.694, 7.855 for modes 1, 2, and 3 respectively. The shift in natural

frequency between the undamped beam and the exact solution becomes:

A % =Retail - QX. 00

where 1e" denotes the complex natural frequency from the exact formulation.

Table 5.6 Frequency Shifts Due to Addition of the Segmented Damping Treatment.

Configuration quantity Mode 1 Mode 2 Mode 3

Configuration 1 flk 7.91 49.6 138.8

Configuration 1 A% 2.5% 2.3% 2.1%

Configuration 2 Lk 3.16 19.8 55.5

Configuration 2 A% 10.4% 9.9% 9.2%

Configuration 3 flk 1.58 19.91 27.8

Configuration 3 A% 25.8% 24.9% 23.8%
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Discussion of Results

From Tables 5.3 though 5.5, it may be seen that the approximate methods provide beter

estimates of natural frequency and damping as the stiffness of the beam increases relative

to the damping treatment. This result is expected because the approximate mode shapes

for the damped system were derived by assuming that the main beam displacements are

approximated by the undamped beam mode shapes.

Natural Frequency. For the first three modes examined, the approximate methods

produced accurate estimates of the natural frequencies of the system. The frequency errors

associated with the approximate methods are seen in Table 5.7. The percent error is

defined as follows:

% a = Re[fl] - Re[D,•pp x100%
Re[C)]

where the notation Q," denotes the complex natural frequency obtained from the exact

formulation in Chapter 4. For almost all configurations, the size of the errors increase a

few tenths of a percent as the mode numbers increase. The errors increase significantly

with configuration number ( i.e., errors associated with configuration 2 are larger than

configuration 1, and errors associated with configuration 3 are larger than configuration 2)

because the undamped mode shape become a less accurate estimate of the beam deflection.

The Complex Rayleigh Quoticnt frequency errors for configurations 1, 2, and 3 are less
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than .15%, 1.5% and 7.0% respectively for all modes considered. When real mode shapes

are formed by replacing the complex modulus G," with its real part, and these mode shapes

are used with Rayleigh's Quotient, the resulting frequency errors are less than -.19%, .54%

and 5.1% for configurations 1, 2, and 3. The Rayleigh Quotient frequency errors

associated with real mode shapes formed by replacing G,," with its magnitude are less than

.13%, 1.4% and 6.7% respectively for all modes. The magnitude for the errors using all the

methods are relatively closely spaced.

Table 5.7 Errors in Natural Frequency using Approximate Methods:

Configuration I

Mode I Mode 2 Mode 3

RQ ( Re[ G,01) -.19% -.17% -.15%
RQ ( I G,I ) .10% .11% .13%
CRQ .14% .14% .15%

Configuration 2

RQ ( Re[ G,] ) .36% .45% .54%
RQ ( I G,'I ) 1.2% 1.3% 1.4%
CRQ 1.3% 1.4% 1.5%

Configuration 3

RQ ( Re[ G,,') 4.6% 4.9% 5.1%
RQ ( I G, I ) 6.2% 6.5% 6.7%
CRQ 6.5% 6.8% 7.0%
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Loss Factor: The loss factor calculations for the three configurations (Table 5.8) show

trends similar to the natural frequency calculations. The loss factor errors incease with

configuration number because the undamped mode shape becomes a less accurate estimate

of the beam deflection of the beam. For all the methods, the values of system loss factor,

and the errors associated with them, do not increase significantly with mode number. In

this study, the viscoelastic material's loss factor and shear modulus were held constant with

frequency, since the purpose was to compare the predictions of various methods. In an

actual structure, the loss factors would vary with mode number due to the frequency

dependence of the material properties. The errors corresponding to the loss factors obtained

from the Complex Rayleigh Quotient for configurations 1, 2, and 3 are less than 3.7%,

10.0% and 16.4 % respectively for all modes considered. These values are a significant

improvement over the corresponding Modal Strain Energy results. When the real mode

shapes are formulated using the real part of G,', the Modal Strain Energy errors are less

than 11.8%, 20.2%, and 29.7% for configurations 1, 2, and 3. When the real mode shapes

formed by using the magnitude of G,, the Modal Strain Energy errors are 10.4%, 17.3%,

and 24.6% respectively. Note that use of the magnitude of G," when formulating the real

mode shapes provides a better estimate for loss factor than using the real part of G,*.
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Table 5.8 Errors in Loss Factors using Approximate Methods:

Configuration I

Mode I Mode 2 Mode 3

MSE (Re[ G,]) 11.8% 11.70 11.5%
MSE ( I G, 1) 10.1% 10.3% 10.4%
CRQ 3.5% 3.6% 3.7%

Configuration 2

MSE (Re[ G,'] ) 20.2% 20.1% 19.7%
MSE ( I G,1 ) 17.1% 17.3% 17.3%
CRQ 9.8% 10.0% 10.0%

Configuration 3

MSE (Re[ G.,] ) 29.7% 29.2% 28.1%
MSE ( I G,'I ) 24.6% 24.4% 23.8%
CRQ 16.4% 16.2% 15.7%

Chapter Summary

In this chapter it was shown that complex mode shapes derived from the

Correspondence Principle and used in a complex form of Rayleigh's Quotient may be used

to estimate the system complex natural frequency. The form of the "Complex Rayleigh

Quotient" was derived for both discrete and continuous systems. An expression for loss

factor was found from the ratio of imaginary to real parts of the square of the complex
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natural frequency. It was shown for the discrete system that this loss factor has a form

similar to that identified by Ungar and Kerwin (97:954). It was also shown that if real

mode shapes are used to form the strain energies, the loss factor formed from the Complex

Rayleigh Quotient has the same form as the loss factor obtained from the Modal Strain

Energy method. The use of the Complex Rayleigh Quotient was illustrated using a two

degree of freedom system and a bar in extension covered with a constrained layer damping

treatment.

Natural frequencies and loss factors of a beam with a segmented constraining layer

were also considered. The exact solutions developed in Chapter 4 were compared with

estimates from the Complex Rayleigh Quotient and the Modal Strain Energy method. It

was shown that the errors of the loss factors produced from the Complex Rayleigh Quotient

were much smaller than those obtained from the Modal Strain Energy method. The natural

frequency errors from the Complex Rayleigh Quotient were slightly worse than the errors

obtained using real mode shapes in Rayleigh's Quotient, but the difference in the frequency

errors of the two methods was less than 2%.

5.42



V1. Constrained Layer Damping on Beams of Circular Cross Section

Although much has been published on the use of constrained layer damping

treatments on beams and plates, most papers have addressed beams of rectangular cross

section. While beams with circular cross sections have advantages in situations where the

direction of loading is uncertain or a possibility of torsional loading exists, the journal

publications that discuss the damping of such beams with constrained layer damping

treatments are limited.

Both theory and experiment indicate that a uniform concentric constrained layer

on a beam with a circular cross section is not an effective damping treatment for bending

vibration (98:328, 103:780). When the circular beam bends, the concentric constraining

layer surrounding is also forced to bend due to the near incompressibility of the

viscoelastic layer. Thus the concentric constraining layer bends with the same curvature

about the same neutral axis. If the standard Bernoulli-Euler assumptions are made

regarding the displacements of the main beam and constraining layer, this configuration

provides negligible relative motion between beam and constraining layer and thus no

shear in the viscoelastic layer (Figure 6.1). The extensional strain in the viscoelastic layer

is equivalent to that seen in an extensional damping treatment, a geometry with no

constraining layer.
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Figure 6.1. Concentric Constraining Layer in Bending

Previous work has indicated that the performance of a concentric constrained layer

damping treatment on beams of circular cross section may be improved by cuts parallel

to the beam generator lines' (98:328). Other articles on the damping of tubular structmus

have emphasized the importance of segmenting the constraining layer strips to insure their

length is near optimal (83:53, 84:10). This previous work suggests that the optimal

geometry of damping treatment for a beam of circular cross section consists of narrow

strips cut to optimal length that nu parallel to the main beam generator lines. The most

shear will occur in the damping strips furthest from the neutral axis once the plane of

' A generator line or generatrix is a line whose motion generates a surface. The term is used in this
chapter to refer to lines parallel to the beam centerline that define the cylindrical surface of the beam. The
term "generator strip"is used to identify damping strips whose longest axis is parallel to the generator
lines.
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bending is established. Since the circular cross-section is axisymmetric and bending may

occur in any orientation, all strips are equally important.

In this chapter the equations of motion are developed for a beam with a circular

cross section with a constrained layer damping treatment consisting of strips parallel to

the beam generator lines. For the case where the strips are narrow and thin, and all strips

have identical material properties and dimensions, it is shown that the equations have the

same form as the system of equations that describe a rectangular beam with a constrained

layer damping treatment. The effects of segmentation of the constraining layer along the

beam length are not addressed in this chapter, but once the system of equations is reduced

to a form similar to the rectangular beam problem, the methods described in Chapter 5

may be applied.

Beam and Damping Treatment Geometry

The beam to be analyzed has a circular cross-section and is "overed with strips

of constrained layer damping treatment running parallel to the generator lines of the

cylindrical surface. A cylindrical coordinate system is used in the analysis. The z axis

is coincident with the centerline of the undeformed beam, and the beam neutral plane is

identified by values of 0 equal to 0 and x. The transverse beam displacement is in the

r direction at 0 = 7r/2 radians (Figure 6.2). The constraining layer strips are arranged in

J symmetric pairs, and each pair is identified by an index j. If one of the strips is

identified by a central angle 0j, then an identical strip is located at an angle 0,+7c radians.
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Each strip covern an angle 2AM. Because of beam symmetry, the displacements of the

two constraining layers ame equal in magnitude and opposite in direction. and the centroid

of the main beam experiences no displacement in the z direction. The analysis is further

simplified by assuming that each pair of constraining layer strips has a matching pair of

strips separated by an angle of &/2 radians (Figure 6.3). For each strip at angle Oj, there

will be an identical strip at angles O0+&/2, Oj+x, and O0+3 Rx2 . It is also assumed that all

strips of the constraining layer have the same cross section and material properties, though

in some situations the use of different materials for individual strips may help extend the

effectiveness of the damping treatment over different temperatures or frequencies.

U .i(Z) r

Figure 6.2. Beam Coordinate System
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2A9

Aej

Figure 6.3. Damping Strip Geometry

Throughout the analysis, the subscripts "v" and "c" arm used to identify quantities

fat pertain to the viscoelastic layers and constraining layers of the damping treatment.

The viscoelastic layer thickness is 2h, and its shear modulus is identified as G, while the

constraining layer thickness is 2h, and its elastic modulus is identified as .

Assumptions of Displacement and Shear

The equations of motion will be written in terms of the mode shapes w and u1,

which are associated with the transverse displacement of the beam neutral plane and the

z direction displacements of the constraining layer centroid (Figure 6.2). It is assumed

that the centroids of the damping treatment move with the same transverse displacement

as the main beam. Prior to the seperation of spatial and temporal variables, the symbols
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functions of the z coordinate. It is assumed that the centroids of the damping uteatment

move with the same transverse displacement as the main beam.

To properly define the strain energies in the damping layers, the z direction

displacement of an arbitrary point of the constraining layer must be defined in terms of

the variables w and uj. The total displacement of an arbitrary point of the jth constraining

layer at coordinates (r,0,z) may be defined as the sum of the centroid displacement ut and

the relative displacement:

Mi low= ̀ + uj aw (6.1)

To find uj,•,suppose for a moment that the viscoelastic layer acts as a perfect spacer

and resists shear. In this situation, the constraining layer would be forced to flex about

the main beam's neutral axis, and the z direction displacement of an arbitrary point of the

constraining layer at location (rO,z) due to beam flexure would be:

= - r sine w w/ -- d- (6.2)
M= dz

Note that r sinO is the distance of the point from the neutral plane, and Equation (6.2)

arises from Bernoulli-Euler beam assumptions. The (r,O) coordinates of the jth

constraining layer centroid are r=-R+2h,+hk and 0=0o. If the distance between the

centerlines of the beam and the constraining layer is defined as yo=R+2h,+hk, Equation

(6.2) may be used to identify the displacement of the constraining layer centroid due to

flexure:
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,= •,(z~t) and 0,=%(z,t) will be used. It will be assumed that the solutions have the form

*= w(z) exp(iLt) and f---u-(z) exp(ift).

To properly define the strain energies in the damping layers, the z direction

displacement of an arbitrary point of the constraining layer must be defined in terms of

the variables w and u3. The total displacement of an arbitrary point of the jth constraining

layer at coordinates (r,O,z) may be defined as the sum of the centroid displacement u9 and

the relative displacement:

1 M !1 * (6.1)

To find u, . suppose for a moment that the viscoelastic layer acts as a perfect spacer

and resists shear. In this situation, the constraining layer would be forced to flex about

the main beam's neutral axis, and the z direction displacement of an arbitrary point of the

constraining layer at location (r,O,z) due to beam flexure would be:

- r sinO w', w dw (6.2)
' d=z

Note that r sinO is the distance of the point from the neutral plane, and Equation (6.2)

arises from Bernoulli-Euler beam assumptions. The (r,O) coordinates of the jth

constraining layer centroid are r=-R+2h,+h, and 0--0. If the distance between the

centerlines of the beam and the constraining layer is defined as yo=R+2h,+hk, Equation

(6.2) may be used to identify the displacement of the constraining layer centroid due to

flexure:
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=i -MW y. sine6, w' (6.3)

By using Equations (6.2) and (6.3), the z direction displacement of an arbitrary point of

the constraining layer at (r,0,z) relative to the centroid may be written as:

ra - Uj c o ur ea d ~ f( 6 .4 )

= (- rsin0 + y. sin 0e ) w'

Now that the relative displacement is identified, allow the possibility of shear in

the viscoelastic layer. The total z direction displacement of an arbitrary point of the

constraining layer at coordinates (r,0,z) may be defined from Equations (6.1)and (6.4):

uj t = uj + uj ,,= uj + (y° sinO, - rsin0 )w' (6.5)

The resulting z direction extensional strain in the constraining layer at position (r,0,z) is

therefore:

e dzw = uj- + (Y. sinG1 - rsin0 )w" (6.6)

The expression for constraining layer displacement in Equation (6.5) may also be used

to find the shear strain in the viscoelastic layer. From Bernoulli-Euler beam assumptions,

the main beam surface deflection at position 0 is u~u ..,.= -R sine w'. If it is assumed

that the shear strain is constant through the thickness of the viscoelastic layer, the

viscoelastic shear at any position 0 may be written as:
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uj m4 r-R+2kv) - u kw + e w'

2k,

- J + y. o~lnejw'
2k,

Notice that the expression for shear is independent of the 0 coordinate. This indicates

that the viscoelastic shear strain is constant over the cross sectional area of a single strip,

though the strain will vary wAh the distance of the strip centroia •iomn the neutral plane.

Developing the Equations of Motion

In this section, expressions for kinetic and strain energies of the beam and

damping strips are -. '7loped, the variations of these energies are obtained, then the

equations of motion are developed using Hamilton's Principle. The strain energies from

the flexure of the main beam, the shear in the individual viscoelastic layers, and the

extension and flexure of the constraining layers are included in the formulation, as well

as the kinetic energy resulting from the transverse displacement of the beam and the

damping layers. The energies due to rotatory inertia and shear deformation in the main

beam are ignored because the beam modal length is large compared to beam height. The

potential energy from the extension of the viscoelastic layer is also neglected since its

modulus is much smaller than those of the constraining layer and main beam. The energy
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modulus is much smaller than those of the constraining layer and main beam. The energy

terms used in the analysis are similar to those considered by DiTaranto (17:881) and

Mead and Markus (59:163) in their evaluations of rectangular beams with an added

constraining layer.

It is assumed that the beam and the J pairs of damping strips all move with the

same transverse displacement. All the strips have the same cross sectional area and

material properties, so the total kinetic energy of the system is:

T I - L 2 f dz (6.8)

"m,= EjpA = Pb Ab + 2J [p AC+ p,, Av]

With the assumption that *(z,t)= w(z) exp(ift), the variation of the kinetic energy

becomes:

a T = - fo L W m, w 8w dz (6.9)

The strain energy of the main beam due to bending, and the variation of that energy, has

the following form:

Ub fo1 W1 2 dz, Ub. = frLEb 'b w"6w" dZ (6.10)

After integrating by parts, the variation of the beam strain energy becomes:

8Ub= f0LEb• b w""w d z + Ebb w"8w1Z.-,,1 EbIb w wI.. (6.11)
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Consider the jth constraining layer, identified by its central angle O0 The extensional

strain identified in Equation (6.6) yields a strain energy of the following form:

U, = 1 fffE, C2dV
%=j ff 4dv (6.12)

= - fLf '.e. ° Eo[ 'i+y. sinew"-rsineow" ]r dedrd,
2 o _4.- 0j e-Ae

The variation of this strain energy becomes:

auo= fff { E [ (uJ + y. sineO w)-rsnO W"i ]wuj

+ E, y.osin,(u +yysine, w r-sin O(uj+y.sinOew") (6.13)

+ (r2s'in0-rsin• osinO,)w"]w" } dVe

The variables u, and w and the constants y., 0,, and E, do not vary across the cross

section, so Equation (6.13) may be integrated over the constraining layer cross sectional

area. To simplify the resulting expression, define the following terms:

,= = h ,& (6.14)

ii = ffr2sineO dAc= 2Y.h,(Y.o+hc4[AO-!cos(2O) sin(2A0)] (6.15)
2 1

_y = 4hcsin(AO) (y 2+!h) , ff rsinO dAc= A.y •snO (6.16)
3

Note that if the damping strips are narrow and thin, then sin(AO)=AO, y. 2+1/3 hV2- y.*,

and AX is approximately equal to Ajyo. By integrating Equation (6.13) and using
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Equations (6.14) through (6.16), the variation of the strain energy may be written in the

following form:

a U, L fo { e [ Ac. + siej (Aoy.,-Ay ) w" 8.;(.,
fL{ [A 0snjAy-k)" Uj (6.17)

E. [(Ayy-Av) sinei (u,+y sinOew")+(1,-y Sin edY)w'l~wI } dz

Define the following geometrical parameters to simplify the expression for SU, ,:

A(Ay) = (A-ye-Ay) =4(he(A0 y2-sin(A,) (y.2 +!h,) (6.18)

(I _ -yo sin2Oj AY) (6.19)

After substituting these parameters into Equation (6.17) and integrating by parts, the 8u1

and Sw terms may be collected:

fL f [ E oA~u E, oA(Ay) sinO, w"' w L "

+[ EeIJw""+ E,,&(Ay) sine, (uj11 + 4y. sinO, w .. ]8w }Ad

+ [ EA,,.+ EA(Ay) sineo wI] 5u 1,, (6.20)

+ [E=I, w"+EeA(Ay) sinej (uj+y. sinujw"')]8W'tz.o.,

- [E•., w,"+ EcA(Ay) sinO, ("+y. , sin ,w"]8wI._,

Consider the strip of identical cross section located opposite the jth strip, with

center angle equal to 0A0 +n radians. The z direction displacement of the opposing

strip, u, will be equal in magnitude and opposite in direction to the z direction
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displacement of the original strip. The parameters Ay, A(Ay), ku, and y. are unchanged

for the opposing strip, while sin % =-sinej, A =-u, and N =-Su. As a result, the

variation of the strain energy of the opposing strip is identical to Equation (6.20), and the

variation of the pair of strips may be written as 2 8Ubj

The strain energy in the viscoelastic layer of the jth strip due to shear is uniform

across the cross section:
Uv f GA V = 2 f L GA (2

(2by)2 [u i dz (6.21)

where Av is the area of the cross-section of the viscoelastic layer:

A, = 4h,(R+h,)Ae (6.22)

After integrating by parts and collecting terms, the variation of the viscoelastic strain

energy has the following form:

a U ,----- [(uG + y +sin w') 6uj -ysinjO(u +y sinOw/)8w] dz (.
"i (2h V)2  (; 0 j(6.23)

+ vAy.Sine 1 [u, + Y.sinO1 w I' 6w(2h)2

Because the viscoelastic layers of the Oj and 0,+n strips have the same strain energies,

the variation of the strain energy for the pair of strips is 2 8Uj.

To develop the equations of motion for a beam with J pairs of strips, the variation

of the energies for all the strips is required. Because w, G,, A,, hv, and y. do not vary
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with the strip number, the total strain energy in the viscoelastic layers of J pairs of strips

may be written as:

IUw - 2r, IUj

. f 2G, AQ•"• [(uj+y.sinejw )a uj] - r.. [y.,sinej,(uj+y<,sinejw'+)]Sw}dx

+ 2G, A,, y.o -1 (ShO$uj + y~sinOjw' )] 8w

(6.24)

The variation of the constraining layer energy for the J pairs of strips may be adapted

from Equation (6.20):

6U,., = f 2 EA, [ -(-2E -2E,,A(Ay) sinOj w"') au,] (6.25)

+ .t [2EJIwu"'+2E£ A(Ay)sinOeuj" + y sinejw".)] 8 w}d + B.T.

where B.T. designates the boundary terms in 8U, ,:

•.,' - E, [ A, 'o,+, + 2o E,, Ao (Ay) s,,., w. 8]u

S1•., [2, ,]w"+rj., [2Ev A(Ay) sinoj, +y. soo,,wi)] }16w' L-of 6.6

- {j.j [2EIJ,]w"'+rj.7 [2E, A(Ay) sin6j(uj +y. sinOjw"')] }8wLo

The variational energies identified in Equations (6.9), (6.10), (6.24) and (6.25) can

be used in Hamilton's Principle, which will have the following form:
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8U6 +8 U.. + 86U - 6Tm- 0

-/ J .4 I ..... laUJl +[....law•- ( El (6JM

+ ( ... )w I1÷+ ( ... )bw' tOgL ( ... )8u Io•

The variational energies consist of a combination of terms within an integral over z, as

well as a set of boundary terms. Hamilton's principle is satisfied by setting the arguments

of the 8w and 8uj terms equal to zero in Equation (6.27). By setting the bracketed terms

within the integrand of Equation (6.27) equal to zero, the equations of motion are

identified:

Uj -,wJ=rJ, nJiw A ) sin-j wrig j = l...J (6.28)

"2 (/hG, '' [y,,sin, (i'.yosinOjw')]- w (6.29)

S2Ec A (Ay) .n .I sin j (uJ,+y.sinOjw.. )

where

G, A, G, (R+h/)

(2h,)2 A E 4h,h, E,(R+2h2+h) (6.30)

EJI,, =Eb Ib +2 rl,[ E, II]

The boundary terms from Equation (6.27) provide the following boundary conditions:
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lE., Auj'+EA(Ay) ,wn , w" 1aua, L. 0, J - 1.. (631)

[Erdw".2EcA(Ay) r,. sineQa,'.Y~sinejw")]8w' L..- 0 (6-32)

X- oG vy

EJ., (2X r,, ýej (j~ysm jw~l(6.33)

+ 2 E, A(Ay) Ej., lsin idj '+y .os snw 18 1W - 0

Because the strips are applied to the beam in sets of four, where each pair of strips has

a complementary pair vJ2 radians away, the summations of the sin2 j terms may be

written in a simple form:

sirt i., [siri2O, + sOn(Oj + un12)] (6)

With this substitution, the differential equations become:

j' -,Uj u= yo Jjw' A( sinAy , j = 1...J (6.35)

.•,,,,, w G A (///o, 0') +j y."]- m, W
(2h.5 (636)

Ec A(Ay)I[2 V. (sin ejuj")+ J y.ew
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Special Case: Equations of Motion for Thin Narrow Damping Strips.

In this section, the case where the damping strips are thin and narrow will be

considered. For this configuration, the parameter A(Ay) defined in Equation (6.18) is

small compared to the value of A, yo or A_:

A(Ay) = (Acy,-4Axy) =4he( AO y2_ sin(AO) (yoheh 1)) (6.37)

In the equations of motion (Equations (6.35)-(6.36)) and boundary conditions

(Equations (6.31)-(6.33)), A(Ay) appears with higher order derivatives of u and w. For

most configurations of interest, the magnitude of these derivatives decrease with order.

(As an example, consider the derivatives of a pinned-pinned beam whose mode shape

is w--sin (nnz/L).) For the case of thin, narrow strips, the terms containing A(Ay) can

be disregarded, and the equations of motion and boundary conditions may be simplified:

"- = g• gy sine, w', /auj I Z.oL= 0 i=1...j (6.38)

EIIw"// G,, A Yo[ 2:., (sinO, uj) + J y. w"]- 0 2mw = 0 (6.39)Vad•w (2h )2

El(m,, / G, (.2 . (sinOj uj)+Jyew') 16w.= 0 (6.40)

E/•,tw/8 w' L-,o= 0 (6.41)
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Consider Equation (6.38), the second order differential equation in u1. If somehow

the function w' was known, then a solution for uj could easily be found for a strip located

at Oj= ,J2. If such a solution was identified as u,, the defining equation for u, and its

corresponding boundary condition could be written in terms of a linear operator, L:

L [ I a g,yow', L-oýL= 0 (6.42)

where

L [= _, (6.43)

If both sides of Equation (6.42) are multiplied by sin 0j, the term can be brought within

the linear operator:

sine, L[ ulI = L[ sinej ulI = gyosinO, w' (6.44)

The boundary conditions associated with ul may also be manipulated to contain the term

u'sinej

ulul Z.o" = 0 - (ulsinOj )' 6(ujsine)p,.%L= 0 (6.45)

By comparing Equations (6.44) and (6.45) with Equation (6.38), it can be seen that the

expression u1sinej satisfies the equations and boundary conditions that deft-e uj. When

the substitution uj=ulsin0j is made in Equations (6.38) through (6.41), and the relation

Y-sin 20j=Jr- is applied, the equations may be written as:

6.17



•"s J U,." , j , ... - (6.46)

N[',÷..W/ , 4,8U1_ =0.,,, (6.47)

F G,AFyJ [ ,(2y,)/A 2mJ [ 0 (6.4J)

E4~1jw~8w~ 4~-0~ E, 1 w'- G~v.~~ ~ - ~ (6.49)

The equations in u, and w have the same form as the coupled system of equations

developed in Chapter 4 for the rectangular beam, though the definitions of the constants

are different for the two configurations. The rectangular beam equations have been

solved in the literature for various boundary conditions (76:271). After proper

interpretation of the constants in the equation, the rectangular beam results may be applied

to the problem of a beam of circular cross section covered with thin narrow strips.

Once u, and w are known for a given set of boundary conditions, the relationship

uj =ulsinO, may be used to determine the contributions of the other strips to the damping

of the entire beam. By combining this relationship with Equation (6.7), the viscoelastic

shear strain for the jth strip can be written in terms of the shear strain of the strip with

Oj= n/2:
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uj + Y. -n01 w'
.a sinjy,, (6.50)

This expression can be used to develop a relationship between the viscoelastic stmin

energies of the two strips:

U,, - 800s U,• (6.51)

For systems where the beam strain energy is large compared to the energies of the

damping strips, and the damping of the constraining layer and beam is negligible, the

Modal Strain Energy method provides the following approximation to the system loss

factor:

2_._ __ U_,__ 2__._ _1 Uvj (6.52)

Us,+2r.l Uv,+2r., U. Ub

where

u dz (6.53)

By using the relationships between the jth strip and the strip at Oj--7t/ 2 , the loss factor

may be written as:

11 U J 11U
T3 a2 s iw , VI VI (6.54)
1j . I Ub - Ub
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Because there are a total of 2J strips on the beam, this result indicates that the energy

dissipated by a full set of strips on the beam of circular cross section is equivalent to the

energy that would be dissipated by half the total number of strips at a distance R from

the neutral axis. Loss factors are a function of both the energy dissipated and the total

strain energy of the beam, so a comparison of loss factors for damped beams with

rectangular and circular cross sections will depend on the cross sections considered. The

loss factor of a damped beam with a solid circular cross section is .65 times the size of

the loss factor of a beam with a solid square cross section that has the same bending

stiffness and the same coverage of constrained layer damping treatment.

Chapter Swmary

In this chapter, the equations of motion were developed for a beam of circular

cross section damped with a constrained layer damping treatment. The damping treatment

consisted of constrained layer damping strips placed parallel to the beam generator lines.

It was shown that the equations simplify for configurations where the strips are placed

in sets of 4, where each strip within the set is separated by an angle of Wt/2 radians. For

the special case of thin narrow damping strips, it was shown that the equations of motion

have the same form as the equations derived in Chapter 4 for the damped rectangular

beam. This result enables the approaches developed for the rectangular beam to be

applied directly to beams of circular cross section.
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VII. The Barberpole: Damping in Bending and Torsion

In this chapter, a new constrained layer damping configuration is proposed for

beams of circular cross section that may experience both bending and torsional vibrations.

The "barberpole" configuration consists of narrow strips of damping treatment oriented

at an angle with respect to the generators' of the beam's cylindrical surface. The

individual damping strips may be continuous over the length of the beam, or periodically

segmented along the strip length (Figure 7.1). A quasistatic analysis is developed to

evaluate the effectiveness of the barberpole configuration for damping bending and

torsional vibrations. It is shown that damping for both bending and torsion is attainable

with the same damping treatment if the constraining layer strips are periodically

segmented. It is also shown that for the pure bending problem, the unsegmented

barberpole geometry provides an improvement in damping over unsegmented straight

strips. At each crossing of the beam neutral plane, the constraining layer is free of

extensional stress, which provides a "virtual segmentation" effect. This virtual

segmentation provides an alternative to conventional segmentation of the damping layer

when the more conventional approach is undesirable due to environmental or operational

reasons.

1 A generator line or generatrix is a line whose motion generates a surface. The term is
used in this chapter to refer to lines parallel to the beam neutral axis that define the cylindrical
surface of the beam. The term "generator strip"is used to identify damping strips whose
longest axis is parallel to the generator lines.
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7.la. Unsegmented Barberpole

(.

7.lb. Segmented Barberpole

Figure 7.1. Barberpole Configurations
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Overview of the Bending and Torsion Problem

In Chapter 6 it was noted that previous research on constrained layer damping

treatments for cylindrical beams in bending (84:HBA, 98:328) has shown that the optimal

constrained layer configuration consists of series of narrow strips segmented to optimal

length that are placed along the beam generator lihies. One's intuition would suggest that

narrow generator strips are not an effective configuration for damping torsional vibrations,

and this is confirmed by the analysis presented in this chapter. For the damping treatment

to be effective, the constraining layer must resist the motion of the beam surface to induce

strain in the viscoelastic layer. When the beam is in torsion, the beam surface is in pure

shear, and narrow constraining layer strips parallel to the generator lines do not effectively

resist this shear. Narrow strips applied along the principal axes of strain at an angle of

n/4 radians relative to the beam generator lines provide maximum resistance to this

deformation, and the relative displacements of the beam surface and the constraining layer

induce shear in the viscoelastic layer. Strips aligned at a angle other than 7r/4 radians will

also produce some resistance to surface deformations caused by torsion.

If a structural element is to be subjected to both bending and torsional vibrations,

damping for both can be accomplished by the proposed barberpole configuration. The

analysis in this chapter confirms that the optimal constrained layer treatment for bending

vibrations consists of circumferentially narrow constrained layer strips aligned parallel to

the beam axis that are cut to an optimal length, while the optimal pitch angle of such

strips on a beam subjected to torsion is 7t/4 radians. The optimal treatment for a mixture
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of vibrations is some angle between these two extremes, and depends on the relative

importance of torsional damping in the problem. The choice of pitch angle in the mixed-

vibration problem is analogous to determining the "optimaln ply configuration of a

composite material; the optimal pitch angle depends upon the combination of bending and

torsion loads expected.

The segmented length of the constraining layer strip is also a design variable. It

will be shown that the optimal length analysis of Plunkett and Lee can be applied directly

to the torsional problem for any choice of pitch angle. The analysis may also be applied

directly to the bending problem when the pitch angle is zero, and the strips are parallel

to the beam surface generator lines. A nonzero pitch angle produces non-uniform strain

in the surface, and the effects of such non-uniformity on optimal length were examined

in Chapter 3.

It should be noted that if the beam to be damped is part of a larger structural

assembly, the frequencies of concern are often associated with mode shapes of the

structure, and not the beam itself. In such a situation, the damping should be optimized

at the natural frequencies of the "global modes" of the assembly (84:HBA). Because in

such cases the frequencies are very low, a quasistatic analysis would better model the

behavior of the damping treatment in the frequency range of concern than an analysis at

the natural frequency of the damped beam.
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Beam Geometry and Coordinate Systems

The bearn to be analyzed has a cirular cross section of radius R. The (rO.z)

coordinate system may be used to describe the beam and constraining layers, where the

z axis is coincident with the axis of the undeformed beam and the 0=0 line is aligned

with the beam neutral plane. Consider a narrow rectangular dampirg strip with its longest

dimension oriented at an angle a relative to the beam z axis (Figures 7.2 and 7.3). The

length of the damping strip is 21, its width is 2b, and the viscoelastic layer and

constraining layer thicknesses are 2h, and 2h, respectively. The beam's cross section is

assumed to be much larger than that of the constraining layer, thus, for this analysis, a

"substrate approach" is appropriate. It is assumed that the beam surface displacements

are specified and are unaffected by the damping treatment. This assumption has been

( used in previous analyses of constraining layers on flat plates (73:150).

2k >
2h

Figure 7.2. Barberpole Damping Strip Geometry
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(

e-z

teutrd plm

Figure 7.3. Barberpole Coordinate Systems

A local coordinate system may be developed that is better suited to developing the

constraining layer equations of motion. With the beam in its undeformed position, define

a local s-t coordinate system centered on the beam surface under the constraining layer

centroid, and oriented in the principal directions of the damping treatment (Figure 7.3).

Define the s-t axes in the direction of the z-0 axes after a clockwise rotation of angle ot,

where it is assumed that -n/2 < at < it/2. The s coordinate is aligned with the damping

strip's longest dimension, and s is positive in the direction of increasing z. The pitch

angle a is positive when an increase in s results in an increase in the 0 coordinate. Let

(0,,z,) identify the (0,z) coordinate of the origin of the s-t coordinate system. The

transformation between the two systems is:

z = z.+scosc +tsinx 0 = o+ S sina + t Coss (7.1)
R
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but the equto of motion for boti the tordiral and bending nalys wil be wdiw in

the s-t coordint sym.

Torsional Analysis

Surface Displacements for Torsional Loadng. The displacements ot the beam surface

are found for the torsional problem by assuming a uniform twisting moment through the

beam. Consider a cantilever beam or bar with a twisting moment applied to its free end.

Each cross section of the beam experiences a rotation proportional to its distance from

the fixed end that may be written as 8(z)=Cr z, where CT is the twist per unit length

(Figure 7.4). This is equivalent to a quasistatic loading assumption.

Because the bar has a circular cross section, there is no warping. The surface

displacement in the z direction is zero, and the surface displacement in the 0 direction is

RCTz. The surface displacements in the s and t directions are defined as w, and w,:

w. = RCr sina (z. + scosa - t sine)

w, = RCT cosa (z.o scosc - t sina)

8(Z) z 0

().(z) = Cr z

Figure 7.4. Torsional Displacement
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Figure 7.5. Torsional Rigid Body Analysis: Constraining Layer Deflections

Equations of Motion for a Rigid Constraining Layer. In this section, a set of equations

are developed for the constraining layer using principles of equilibrium. The

Correspondence Principle is invoked, and the viscoelastic shear modulus G, is treated as

a real constant while the equations are formulated and solved for the corresponding elastic

problem. For all loads in the s-t directions, it is assumed that the constraining layer acts

like a rigid body, resisting both shear and extensional deformations. To satisfy

equilibrium, the total moment and forces in the s-t plane applied by the viscoelastic layer

to the constraining layer must equal zero.

In the rigid constraining layer formulation, the centroid of the constraining layer

undergoes a displacement C, and C1 in the s and t directions, and the strip also undergoes

a small rigid body rotation psi (IF) (Figure 7.5). Each point on the constraining layer

moves from its original position on the beam surface. The displacement of an arbitrary
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point may be written in terms of the three rigid body displacements. Let u. and u, be the

displacements in the s and t directions of an arbitrary point on the constraining layer

originally located at coordinates (s,t):

u, = CS - t , u, = C, + s T (7.3)

The shear strains in the viscoelastic layer are assumed uniform through the

thickness, and are defined as the differences in the constraining layer and substrate

displacements divided by the viscoelastic layer thickness:

YS =u,-w,_ C.-tW-wS ,u-w1 C,+sT-wt (7.4)
2h, 2h 'n 2hv - 2h,

It is assumed that the viscoelastic material is homogeneous throughout the volume and

G,, is a constant. The equations of equilibrium may be written as:

F, = ffG,, y•, ds dt = 0, F, = ffG, y,, ds dt = 0

M -= ffG, ( Yr't - ys) ds dt = O

The integrals in Equation (7.5) are integrated over the entire area of the constraining

layer, from s= I and from t= b, and the resulting equations provide solutions for C ,, C,

and T in terms of the specified surface displacements w, and w,:

C-= - fwdsdt = RCsina z. (7.6)
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C- WIffwdsd RCCosa z. (7.7)

a RCr (b2 sin 2cg 1 . cOsG) (7.8)

(b2 +12)

Note that the expressions for C, and C, are equal to the displNcements of the beam surface

under the centroid of the constraining layer, indicating that the constraining layer behaves

as if it were pinned at its centroid.

With this knowledge of the constraining layer displacements C,, C,, and TV, a sense

of the relative magnitudes of the shear terms for the quasistatic case can be obtained. C,

and C, from Equations (7.6) and (7.7) may be substituted into Equation (7.4) to simplify

the expressions for y. and y,:

( -t 7 -RCT sina(s cosa-t sine) (7.9)

V2h

S T -RCT cosC(s cosoc-t sinx) (7.10)
y. = 2hy

Because it is assumed the constraining layer undergoes no shear, the average value for

the y, strain in the viscoelastic layer is equal to one-half the value of the L. strain in the

substrate:

1s WSW -aw, aw aw 1
ast suu(7.11)

I RC(cos2a-sin2c)
2
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The strain energies resulting from these shears may be integrated over the area of the

damping strip, and their magnitudes may be compared:

- biGRCr sin2'9)2+1 2(RCr sina c c)] (7.12)

biG,

ULI 3-G-[ t12 (VR CT cosW2 )2 .b2 (R Cr cOcs sina)?] (7.13)

U,1 = b h, G, R2Cr2(cC2s) 2  (7.14)

For the case where b2Vc 12 and T-=RCr cos2 0T, the expressions for the y,, and y, shear and

their corresponding potential energies simplify fuither:

RCs [-t cos2ca -s sinx cosa] (7.15)
( 2h,

- RCT t Cosa sins (7.16)

2h,

bI GVR 2c2 [2 2+12. COS)2] (7.17)

UY 3hV b(o ,(ia(.7

U b3I 3 (RCT cosa sina)2  (7.18)

Observations on the Rigid Constraining Layer Results. The relative sizes of the strains

and strain energies in the rigid constraining layer analysis can be used to identify which



terms dominate the problem, and how the analysis might be extended to include an elastic

constraining layer. Consider the case where ct is not zero. Note that for b2 << the ratio

of U. over U., is approximately equal to the ratio (b/If and the ratio of the %, and -f.

shear terms at any point (s,t) on the surface is approximately equal to t/s:

Y" t coso Sift. t for t << s (7.19)
YrS -t cos2ct-s siricosa s

UY, b2(c=sGsina) 2  b 2  for b2 << 12 (7.20)
U. b 2(cos2a 2 +12 (sina•cosa? P

U. is also much smaller than U. for the typical case where hk is small compared to

b and 1:

U._• 3h, (cos2a)2 (7.21)
U rs b 2(cos2c)2+l 2(sina~coS%) 2

Thus it can be seen that for thin narrow strips the viscoelastic strain energy resulting from

the y. strain dominazes the problem.

When the strips are aligned with the beam generator lines (i.e., a--O), the solution

for the rigid body displacements and angular rotation reduce to the following:

C ,=0, C = = RCT 12  R CT (7.22)b 2+12

The viscoelastic shear terms for any point (s,t) on the damping strip become:
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tit r (7.23)
Y --211, 211,

s( -RCr) . sRC. [_ b2 1(.4
,.-r , =" -- K- ii (.4

Ya = 2h, 21, b+121

Ya • RCr (7.25)

The viscoelastic strain energies integrated over the area of the segment become:

b31G, (RC,) 12 2 (7.26)
U3. 3h, [b2+121•

bl 3G, (RC• 2 [ b2 2 (7.12)
UT-= .3hv Lb2+12 J

U 1& = 4 bh h, G, (RC,) 2  (7.28)

Although it would be incorrect to say that thin strips parallel to the generator lines

provide no damping in torsion, all the terms are small. The strain energies associated

with y, and y, are small because b<< I for narrow strips. The strain energy associated

with y. is small because 2h, is small for thin viscoelastic layers. In general, the shear

in the viscoelastic layer of a constrained layer damping treatment is inversely proportional

to its thickness, and so increasing the 2k% dimension would be counterproductive.
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Equations of Motion for an Elastic Constraining Layer. The torsional analysis will now

be modified to include elastic extension in the constraining layer. For the case of long.

narrow strips, the rigid body analysis showed that the 'y. viscoelastic shear stresses am

much larger than all others. These stresses tend to stretch the constraining layer in the

s direction. To model this behavior, define u=u(s) to be the s direction displacement of

the constraining layer averaged across the width of the strip. The displacement u includes

the displacements due to the stretching of the constraining layer as well as the rigid body

displacement identified as C, in the earlier analysis. The variables IF and C, are used to

define the rigid body rotation and the rigid body displacement in the t direction.

This analysis uses quasistatic assumptions. The defining equations for the

constraining layer are developed using the Principle of Minimum Potential Energy, which

specifies that the strain energy within a system attains an absolute minimum when the

elements of the system are in equilibrium (61:448). The standard variational notation is

used, where Su, BC,, and I' denotes the variations of u, C,, and T' in the problem.

The strain energy from the elastic extension in the constraining layer has the

following form:

U= - fEAC (u') 2 dS d(-) (7.29)

The viscoelastic shear strains and the resulting strain energies become:
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V-ty -RCr scna(z ÷s cosa-t sins)

2hV (7.30)

C, + s T - R Cr COS.( + ÷ cosoza -t sins)
2hV

2 0, (7.31)

,=.I• [2bC .+s -+RCrca( oscosCC))2 T+bL (RCrcosa sina)t ]d
The Principle of Minimum Potential Energy may be written as:

a U f -, lu I EA u 2by (u -R CrSinc (Z.+s SCosa))l

+ ac [e 2h [Ct+s - RCT cosa(Z0 +s Cosa~)]]+ (7.32)

8'7 [2-b3 (RCr Sin2 -I) + 2bs (C, +s T -RCT CoSa(ZO+SCOSa)) J jds
+ EcAcu'bu I'. = 0

Equations are developed by setting the arguments of the variational terms in Equation

(7.32) equal to zero. The 8C. and ST terms are independent of s and therefore the

integral over s may be brought inside the bracketed expression:

f-I au[- G" 2b (u-oRCsina(z°+s oosa))]ds = 0 (7.33)

2h7
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8C G'2b{C 1 +sY-RC~ercw(z..s coscc))ds - 0 (7.34)C , f1 2k

blyf'{(20 (RcT- 804~ - T) (7.35)

+2bs (Cs T-RCrosc(zO+soos4))}da=O

EAul5u I', - 0 (7.36)

The values of Cý and 'P developed from Equations (7.34) and (7.35) are identical to those

found in Equations (7.6) and (7.7) in the rigid body configuration. The differential

equation in u and its boundary condition are obtained from Equation (7.33) and (7.36):

u f-g u= -gRCr7 sina(z.+ s cosa) , u'l, ,t- 0 (7.37)

where

9 = (7.38)
(2h) (2hc) Ec

Observations on the Elastic Constraining Layer Results. The solution to Equation (7.37),

the torsional differential equation, has the following form:

u = RCrA [Zo +S cosa - cosa sinh(/" s) (7.39)V V cosh(v¶g 1)
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The constant term in the solution, RC sina z;, identifies a rigid body displacement equal

to the C, term from the previous section (Equation (7.6)). By substituting Equation (7.39)

into Equation (7.30), the expression for the y. shear in the viscoelastic layer becomes:

R,,- CT d Sind sinhVjS (7.40)

'5 2h, Vrjcosh,/-

It can be seen from Equation (7.40) that the rigid body displacement does not affect the

strain in the viscoelastic layer.

The viscoelastic shear strain identified in Equation (7.40) has a form similar to the

viscoelastic shear strain in a constrained layer mounted on a substrate in a state of

uniform strain e., which was discussed in Chapter 3 (Equation (3.8)). In the barberpole

configuration, the "effective strain", is co=RCr sinot cosa. Because Plunkett and Lee

developed their conclusions about optimal length from a loss coefficient derived from the

expression for the viscoelastic shear strain, their conclusions can be applied directly to

the barberpole torsional problem.

Equations (7.39) and (7.40) show that u' and the shear strain in the viscoelastic

layer are proportional to the effective strain, RCr cosa sinct. An optimal choice of pitch

angle increases the shear strain in the viscoelastic layer and improves the performance of

the damping treatment. This formulation exhibits an expected result: the effective

substrate strain is largest when the function cosci sinci is maximized, i.e., at ot--A4

radians. This is expected because this angle identifies the principal axes of strain for the
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beam surface, and the displacement of the substrate in the s direction is maximized. If

the damping treatment is designed primarily to eliminate torsional vibration, then the pitch

angle should be chosen to maximize the effective substrate strain and the individual strips

should be segmented to optimal length.

The torsional differential equation (Equation (7.37)) reduces to its homogeneous

form for Cz=O. This indicates that there are no strains induced by the u displacement

which must be added to the small viscoelastic shear strains calculated in the rigid body

case.

The general methods used to calculate a loss factor for the barberpole

configuration are discussed after the bending analysis. To obtain values of loss factor,

the strain energies of the individual components of the system must be calculated. For

the torsional problem, the strains u' and y are the same for all strips on a fully coated

barberpole, a fact which allows the loss factor of a barberpole with N strips to be

formulated using one set of strain energies N times.
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Bending Analysis

In this section, equations of motion for the constraining layer are developed that

characterize the barberpole geometry in bending. A quasistatic approach is taken in the

analysis, and therefore kinetic energies are not considered. The equations are formulated

using the Principle of Minimum Potential Energy.

Surface Displacements for Bending Analysis. The surface displacements of the beam in

bending are much more complicated than those of the torsion problem. In this analysis,

a definition of displacements for the beam surface is used that eliminates any rigid body

displacement that does not induce strain in the viscoelastic layer. Strains are calculated

for the surface after deformation, and the displacements are defined by integrating the

strains over the interval (O,s). With this definition, the displacement of the beam surface

at the origin of the s-t system is always zero. This approach simplifies the analysis

considerably, yet allows the shear in the viscoelastic layer to be properly identified.

The surface displacements used in the analysis are developed from the elasticity

solution for a prismatic beam in pure bending. In the elasticity solution, the cross

section of the main beam is assumed solid, which is clearly not the case for many

cylindrical beams used in practical applications. Despite this, the choice was made to use

the elasticity solution to characterize the beam surface strains because it is a well known

result that allows a relatively straightforward analysis of the barberpole geometry.
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Saada (80:355-359) identifies the solution of the elasticity problem for pure

bending in terms of an (x1,x2,x3) cartesian reference system identified in Figure (7.6). In

such a coordinate system, the displacements of the beam subjected to an applied moment

M in the x, x2 plane are:

U1 =CD X1 X2  U=2- CB (xI -vX +vX-2) u3 =-vC X2 X3  (7.41)

where

Ca - (7.42)

and v is Polsson's ratio. CB is a constant equal to the applied beam Mnoment divided by

the beam bending stiffness, and is a measure of the curvature of 'he beam. As seen in

Figure 7.6, the transformation of the beam surface from x1, X21 x3 coordinates into the

r,O,z system is x1=z, x2=-r sin0, and x3--r cosO. The beam surface displacements in the

r,0,z directions become:

u.= u 3 cos6-u 2sin0
(7.43)

= vR 2 CB sin cos 2O +!Cc sineO(z 2 + vR 2(Sin 20-COee))
B 2

uO = -u2 '!o60 -u 3sin0
(7.44)

= - vR 2C. sin20cosO + _I CB cosO + vR 2(sin20 -co60))
2

u=v R2C. sine cosO (7.45)
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Figure 7.6. Coordinate Systems for the Barberpole Bending Analysis

These displacements may be used to calculate ve and e; strains using the standard

assumptions of linear theory (80: 138):

1 - + - vRC, sine
r r0 (7.46)

IEZZ ý-RC, sine

The extensional strains in the s-t system may be found through an appropriate

transformation (80: 78):

e.= coa e +sina ee =-RC, (coa-vs0n2 a)sinO (7.47)

e. sineg e. +coos~c e., =-RC, (sin2u -vcosx)sine

All ^f. strains on the beam surface are ignored in this analysis. The surface displacements

in the s and t directions may be found by substituting in the coordinate transformation for
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0, then integrating the strains over their respective arclengths:

e + siln+t cossR

esd R2 C5 600 -VSin 2 ) [co ssinoc+tcoso ..c oSo~)

t ri eat=R2 dAd Voa ssinct toa C0(o+Sig

0 Coss H ecPsR R

(7.48)

The surface displacements w, and w, used in the analysis are the integrals in Equation

(7.48) averaged over the strip width 2b:

"W= -f b Lo•= ]*d = =W(c) [coo +--)- COS(e.)] (7A9)

-L b -W(.0

We= 2f:b[foe,,d J ci =-We(c) o(o.÷-•) (7.5)

where

Wa R2 CB(coeac -vsin2 a) Sicb=(7.51)
*/siO si.

,(a) C)I - sinc(±) (7.52)

sinc x)W sin(x) (7.53)

Note that the expression for w, is well defined as a approaches zero:
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UM6- w. R 2 CB O --- -0060.1

R2C hlqi.~ LIM,- sina] (75)

-- RCB sinc(±l) sine, s

For narrow strips, sinc(b cos o/R)- 1 and the w, term becomes small when compared to

w. This indicates that the displacements in the s direction, and the resulting y. shears,

are the dominant effects for the barberpole geometry in bending.

Developing Equations of Motion for Barberpole in Bending. As in the torsion problem,

the bending equations of motion are developed using the Principle of Minimum Potential

Energy. Define two constraining layer displacements that are functions of s: let u define

the displacement in the s direction and let u, define the displacement in the t direction.

The displacements are allowed to vary with the s coordinate but not the t coordinate,

defining an average value across the width of the strip. Because the constraining layer

is much longer in the s direction than it is wide in the t direction, the effect of

viscoelastic shear and constraining layer extension is more significant in the s direction

than in the t direction. The choice of u and u1 as displacements allows the strain in the

viscoelastic layer to be adequately modelled, but totally ignores any lateral displacement

in the constraining layer due to Poisson effects.

The y,, and y,,viscoelastic shear strains are assumed uniform through the thickness

of the layer, and they are defined as the difference between corstraining layer and
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substrate displacement divided by the viscoelastic layer thickness:

Tr,, j(,,W,) ,-a,,) (.Ss)

The constraining layer experiences an axial strain e, and a shearing strain e.:

dud (d.u5)

-, ds - u,

Equations (7.55) and (7.56) may be used to write the strain energies in terms of the

unknown displacements u and u,. The strain energies resulting from the viscoelastic shear

strains are:

U= 4f,,Y,2d =. _~( -w, 2disU". Gf",Ay 2dS !f _ý , (U W)
(7.S7)

u1 = !f A ,dS If - 4 ° (u,_w,)W2d2 Ili 2 (2V•

The variation of these strain energies are:

a . f (u -w,)6u dU- ds (7.58)

The strain energies associated with the constraining layer are:

_°. If GA°' •: C,'"AU,u~= -fGAc2 i =-fGA,,A ,'2d
(7-59)

Uo _Ilf E, AC2-dS= _!f Eo"

After taking the variation of the strain energies and integrating by parts:
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a, O-f -oAu"8,d÷,',..,V'W (7.60)
Uc o- -B Ecj ". 8ug ds + u8 8uk...

The Principle of Minimum Potential Energy has the following form for this problem:

Eau-- bu, Y + +U, (. o+au

(7.61)

-f_(....)8u +(....)8u,]ds + [(....)bu + (....)a uui,]_=(
By collecting terms and setting the arguments of 8u and 8v equal to zero, the

equations of motion are obtained:

d 2U _ ___I_(7.62)

ds$2  WO U 3 4h, hc £E

d2u, _____(7.63

-- gUt = -91W9 Ut I,-,s = 0 g = h, hc G, (7.63)

Note that Equation (7.62) is identical to Equation (3.5) in Chapter 3, which describes a

constraining layer on a flat substrate with an effective surface displacement equal to w.

Special Case: Pitch Angle cc = 0. An interesting special case of the generalized

barberpole problem occurs when the damping strips are parallel to the z axis of the beam.

The analysis provides a baseline by which the barberpole treatment may be judged, and

allows a comparison between damping beams of circular and rectangular cross section.
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When the pitch angle a is zero, w, is independent of s (Equation (7.50)) and

yft=O. Equation (7.54) defines the form of w,, and Equation (7.62) may be written as:

d _ = gRCsine. Sinc () a U = 0 (7.64)

where the sinc function is defined in Equation (7.53). Note that the right hand side of

Equation (7.64) is linear in s, with all other terms fixed by the geometry of the beam and

constraining layer. Like the torsional problem, this analysis produces a differential

c.quation identical to one that describes a constraining layer on a flat substrate

experiencing uniform strain ( Equation (3.5)), so the optimal length results of Plunkett and

Lee can be applied directly to the problem.

From the right hand side of Equation (7.64) it can be seen that the effective

substrate strain amplitude is equal to RCB sine0 sinc(b/R). As expected, the strain

amplitude increases with beam radius R, curvature CB, and increasing distance from the

neutral axis (which is proportional to sin 0o). What is interesting is that the strain

amplitude per unit area also increases with the decrease of ratio b/R. This indicates that

for a strip at a specified 0. location, the narrower the strip, the greater the effective strain

and the more effective the damping treatment. The function sinc(b/R) approaches zero

as b/R approaches x. This indicates that the effective strain experienced by the

constraining layer approaches zero when the strip width 2b is equal to the circumference

of the main beam. While this result is in agreement with the previous work which

iri icates that concentric damping treatments do not effectively damp circular beams
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(101:328, 106:773), this may be a serendipitous result. The approach taken to develop

these equations assumes the constraining layer is in the form of a strip, and some of the

effects that were neglected might become significant long before the strip approaches the

full width of the beam circumference.

The ODE in Equation (7.64) has the following solution:

us= RC, SinC(ib) sino.f.- Sn~ SJ (7.65)

From this solution, the shear strain in the viscoelastic layer may be calculated:

_RCB, sinc(A) sine, sinhrg s (~Y, R (7.66)

2 h, rg coshvrg I

To summarize, the solution of the barberpole equations for the special case of a=O

produces several expected results. A narrow strip (i.e., a small b/R ratio) provides the

most shear in the viscoelastic layer, and a concentric constraining layer configuration

(where b/R---) yields zero viscoelastic shear. The amount of shear in the strip increases

witl its distance from the neutral plane. For a given strip geometry, the optimal length

result of Plunkett and Lee may be used to determine the optimal segment length. The

results of this analysis will be compared with the case of a•o to assess the relative

effectiveness of the barberpole in bending.

7.27



Solving the Bending Equations for Arbitrary o. For the case where a is nonzero, the

expression for w, and w, identified in Equations (7.49) and (7.50) may be substituted into

the general differential equations (Equations (7.62) and (7.63)):

d-u -ga - -g WU [cos(O. +Sd" ) -cos(e,)J (7.67)

d2u# - v~ = g, W,(cc) cos(e, +S!!!) (7.68)

W00 R 2CB (C4sea-VSma sicý! (7.69)

sine(R

-R 2C40 (Sinc -VCOS 2a) .(7.70)

W,&x) I oa[ - sinc(~j)

The solution for u is:

u= W,(a)[ ° +s-na-2-cc•(Oo) +Pcosh(ýfg s) +Qsinh(VrgS)lg(__) (7.71)

g+

where

p Q - (7.72)

The viscoelastic shear strain y. is:
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Wý0I+ )o~.+s!!)+PcoA1* ' ) +Qsinh(iis) ] (7.73)

The solution for u, becomes:

us = Wxa +p 0S (gS) +Q ,s)J (7.74)

where

- Fsina cosO. sin/A-"! -Fg sine sinO, cos(L5. (7.75)Pt = A" Qt = (.s

The viscoelastic strain yn, is:

1k-2!!-_+ +PCo0i(is)+Qsinh(Fgs) (7.76)

For long, narrow strips, W,(at) is much larger than W,(0x). Since the y, and y, strains are

proportional to the two terms, the y, strain provides most of the damping in the problem.

The implications of these solutions are discussed for both the unsegmented and segmented

barberpole geometry in later sections.
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Calculating Damping for the Fully Covered Barberpole Geometry

The torsional and bending solutions for a single damping strip on a beam can be

used to calculate the loss factor for the fully covered barberpole geometry. For the

parametric studies in this chapter, the Modal Strain Energy method is used to calculate

the beam loss factors. Both the Modal Strain Energy method and the Complex Rayleigh

Quotient method are used to obtain damping values that will be compared with the

experimental results in Chapter 8. The Modal Strain Energy method was used for the

parametric studies because the computation of loss factor was simplified by the use of

real mode shapes. The approximation was acceptable beause the studies were used to

illustrate the qualitative effects of the barberpole design on the loss factor, not to obtain

the best possible estimate of loss factor for a single configuration.

To calculate loss factors, expressions for strain energy must be developed for the

individual components of the system. For a barberpole treatment with N strips, the Modal

Strain Energy method provides the following expression for the system loss factor:

S$I.V UY. (7.77)

UbN*. I U + EN. U

In Equation (7.77) Ub is the strain energy in the beam, rl,, is the loss factor of the

viscoelastic material, and U,, and U,= are the strain energies associated with constraining

layer and the viscoelastic layer of the nth strip. Equation (7.77) may be used for both
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bending and torsion by substituting in the appropriate definitions of U1, Uw and U.,

which will be described shortly.

For the barberpole in torsion, it can be seen from Equations (7.39) and (7.40) that

u' and y, are independent of strip position, so if all strips have the same geometry and

material properties, their strain energies are equal. This may be used to simplify the

expression for loss factor in Equation (7.77):

U =%N UY (7.78)

Ub +N U + N U

For the torsion problem, the damping layer strain energies have the following form:

u C f E , A , (7.79)

U1 = J e[G,] A,,y' ds

where u' and . are developed from Equations (7.39) and (7.40). Recall that in the

torsional analysis, the cross section of the main beam undergoes a rotation equal to

E)(z)=CTz. If the beam has length L and a polar area moment of inertia equal to Jb, then

the strain energy in the main beam from torsion is defined as:

Ub = jf LG b [de(z)f d = 1G 2 (7.80)

By substituting these relations into Equation (7.78), the loss factor for the barberpole in

torsion can be calculated.
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Calculating the loss factor for the bending problem is not as straightforward as the

torsional problem. When the barberpole is in bending, ft solutions for u' and y are not

the same for each strip because of the presence of 8o in the solution for u (Equation

(7.71)). The large number of individual strips on a fully coated barberpole leads to a very

tedious computation. This may be avoided if all the damping strips have the same cross

section and material properties, and they are placed in sets of four, where the strips in

each set are separated by an angular interval of x/2 radians (Figure 7.7). For such a

configuration, it is shown in Appendix 7A that the damping strip whose position is

defined by 0.=n'/4 has strain energies that are equal to the average value of the strain

energies for the fully covered barberpole configuration. With this result, the bending loss

factor for the beam has the same form as Equation (7.78). The damping layer strain

energies used in Equation (7.78) will have the same form as Equation (7.79), but with u'

and y defined by setting 0 i--n/4 in Equations (7.71) and (7.73). In the bending analysis,

the main beam has a neutral axis displacement of h(z)=1/2 CBz 2. The strain energy Ub

is written as:

=-ib [=Ž() I d. 2C (7.81)

Using these terms in Equation (7.78) produces the bending loss factor as predicted by the

Modal Strain Energy Method.
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Figure 7.7. Barberpole Damping Strips in Sets of Four
Separated by W2 Radians

It was shown in Chapter 4 that for small damping, the loss factor predicted by the

Complex Rayleigh Quotient could be manipulated into a form identical to that of the

Modal Strain Energy method. The difference between the two forms is that the square

of the magnitudes of the complex strains are used in the strain energy expressions for the

Complex Rayleigh Quotient, while the square of the real strains are used with the Modal

Strain Energy method. For the barberpole problem, the loss factor predicted by the

Complex Rayleigh Quotient for both bending and torsion has the following form:
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N 1,_aQ (7.92)
lCj*Q U.+ N yQN U

where

ICQ E;'(7.83)
u,, ~ ~ G •'. •, A+4, y+ - 7 ds

For the torsion problem, Ub is given by Equation (7.80), and u' and 'y are found by

using a complex value for G, and g in Equations (7.39) and (7.40). For the bending

problem, Ub is defined in Equation (7.81), and u' and '. are found by using a complex

value for G, and g in Equations (7.71) and (7.73).
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Parametric Studies: Unsegmented Barberpole Strips in Bending.

In the next few sections, the relative effectiveness of various barberpole geometries

are considered. Unless otherwise noted, the beam radius is R = 38 mm (1.5"), the beam

wall thickness is At = .71rmm (.028"), the beam and constraining layer elastic moduli are

Ft= E, = 6.89x101 ° pascals (10xl(P lbs/in2 ), the constraining layer thickness is 2h, =

.13mm (.005"), the viscoelastic layer thickness is 2h1=.05mm (.002"), the damping strip

width is 2b = .56 mm (.22"), and the viscoelastic shear modulus is G,°= GJ(1+i71,) where

G,= 331xlolpascals (48 lbs/in2) and %iv= 1. The viscoelastic material properties

correspond to ISD- 112 at 25°C at 20 hertz, which is a damping material produced by 3M

(87). For the parametric studies, it was assumed that there was 95% total coverage of the

beam by the damping treatment, where the missing 5% results from gaps between

adjacent damping strips. These properties, when combined with a pitch angle of .615

radians, correspond to the experimental configuration that is discussed in Chapter 8.

Virtual Segmentation Effect. For the bending problem, consider the solution for u and

y, for a very long strip that crosses the neutral plane of the beam several times. The

solutions for u and y. are proportional to w, except at the free ends of the strip. Recall

that w, and W,(a) have the following form:
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-W,(u~) [c"0..!!!!)-cos(e.)]

W,(cc) R2C,, (c4IX -vsin2U) (7.84)

For a=0, w, is defined in Equation (7.54). If alpha is nonzero, w, is an oscillatory

function with its maximum amplitude bounded by an envelope of width 2W,(a). The

extrema of w, occur when the strip crosses the neutral plane (i.e., M=0 or 0---x), and the

zero crossings occur when the s coordinate crosses the top or bottom of the beam (i.e.,

0= t) (Figure 7.8). Because dw , /ds is equal to the surface strain in the s direction,

the surface strain attains its maximum magnitude at the top and bottom of the beam and

is zero where the strip crosses the neutral plane.

If the barberpole damping strips are long enough to cross the beam neutral plane

several times, the strains in the barberpole strips have characteristics similar to those in

a damping treatment that has been periodically cut to improve performance, suggesting

a "virtual segmentation" effect. For the unsegmented barberpole geometry, the "virtual

segment" is defined as the portion of the unsegmented barberpole strip that lies between

two crossings of the beam neutral plane. On a beam of radius R that is wrapped at pitch

angle a, the total length of the virtual segment is:

x R (7.85)
sine
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Figure 7.8. Surface Displacement of Barberpole in Bending
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The similarities between a virtual segment and an actual segment can be illustrated by

comparing the natum of their solutions. In Figures 7.10 through 7.17, a portion of do.

barberpole solution for a long unsegmented strip is compaed with similar solutions for

a segment with its centerline running parallel to the beam generator located at the top of

the beam furthest from the neutral axis, i.e., with a = 0 and 0.= nn/2. The two geometries

that are compared are shown in Figure 7.9. The portion of the barberpole solution plotted

represents the "virtual segment", i.e., the length of the barberpole strip between the

crossings of the neutral axis. The actual segment is the same length as the virtual

segment.

(/

7.9a. Actual Segment

-Ie

/7n

7.9b. "Virtual Segment"

Figure 7.9 Actual and Virtual Segment Configurations
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Figure 7.10. Barberpole Surface Displacement in s Direction (w,)
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Figure 7.11 Surface Displacement for Virtual Segment
Compared to Surface Displacement for Generator Segment at c/2
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Figure 7.14. Unsegmented Barberpole Solution for Strain u'
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Figure 7.16. Unsegmented Barberpole Solution for Shear Strain y,,
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Figure 7.17. Shear Strain y, for Virtual Segment
Compared to Shear Strain y. for Generator Segment at n,/2
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Although there are similarities in the nature of the solutions, there are some very

important differences that make the unsegmented barberpole solution with virtual

segments less effective than optimally segmented generator strips. For a beam in a state

of pure bending, a state of uniform surface strain exists under the generator segment, and

most of the viscoelastic shear strain occurs at the ends of the strip. Viscoelastic shear

strain in an unsegmented barberpole strip with nonzero pitch angle is driven by a non-

uniform surface strain which drops to zero at the ends of the virtual segment (i.e., the

neutral axis). As a result, there is less viscoelastic shear strain at the ends of the virtual

segment, so the virtual segments provide less damping. The relative effectiveness of the

barberpole geometry will be discussed in a later section.

Choice of Pitch Angle for the Unsegmented Barberpole in Bending. There are two major

factors which drive the choice of pitch angle in the unsegmented barberpole problem.

One factor is that the length of the virtual segments are controlled by pitch angle, and the

effectiveness of the damping treatment will improve if the length of the virtual segments

is near the optimal length. The other factor is that the magnitude of the substrate strain

in the direction of s will decrease as the pitch angle (x increases. Both the optimal length

and the substrate strain issues must be cons'dered to identify the best choice of pitch

angle.

Optimal Pitch Angle: Effects of Optimal Length. For the moment, ignore the

effect of substrate strain and consider the issue of optimal length of the virtual segments.
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The surface displacement w, under the virtual segment is plotted in Figure 7.11, and it

can be seen that the best quadratic approximation to the displacement is a straight line.

A linear variation in surface displacement corresponds to the uniform strain condition, so

the optimal length issues associated with the virtual segment will be addressed by

adapting the uniform substrate strain analysis developed by Plunkett and Lee. This work

is described in Chapter 3.

For the uniform surface strain problem, Plunkett and Lee identified the optimal

length of a constrained layer segment to be Lo•,rj 3.28/ 4g for a broad range of values

of %,. By combining this expression with the length of the virtual segment defined in

Equation (7.85), the following cho ze of pitch angle produces a virtual segment of optimal

length:

sina -n 7 R f• (7.86)
3.28

An earlier analysis by Parfitt (71:1) can also be used to predict an optimal pitch

angle similar to that identified in Equation (7.86). Parfitt considered a rectangular beam

of infinite length with sinusoidal mode shapes of wavelength X. Parfitt reported that if

the beam is covered by a constrained layer damping treatment of infinite length and the

system is lightly damped, maximum damping is attained when the following relation

holds:
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A - 2x (7.87)

The state of surface strain for the rectangular beam with a sinusoidal mode shape

is similar to surface strain under the barberpole strip in the direction of strip length. The

wavelength X identifies the distance between two areas of maximum extension or

compression for the rectangular beam. The equivalent distance on the barberpole strip

is the arclength of the strip that is required to make one full revolution about the beam,

which is identified as s in Figure 7.18. By using this analogy, the results from Parfitt's

analysis may be applied directly to the barberpole problem. From the barberpole

geometry, sh=2L•j.,=2nTR/sina, so the expression "'-r optimal pitch angle is found by

substituting s, into Equation (7.87):

Sina =vrg (7.8)

Note that this result is nearly equal to the result derived from the Plunkett and Lee

expression in Equation (7.86).
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Figure 7.18. Analogy Between Barberpole Displacements
and Parfitt's Sinusoidal Displacements
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The Plunkett and Lee loss coefficient H described in Chapter 3 may be adapted to

quantify how the barberpole loss factor is affected by pitch angle. By substituting in the

virtual segment length identified in Equation (7.85) into Equation (3.14), the loss

coefficient becomes a function of a:

H 4 sinhA sin- - sinB cos-

H= 2 2 (7.89)

VcsL h + cosB

where

2 s Vtg R B Ra- (7.90)
2 sina ' s Sin_ 1

In Equation (7.89), the dependence of the virtual segment length on pitch angle is unified

with the effect of segment length on damping effectiveness. The expression will be used

to quantify how the choice of pitch angle affects the barberpole loss factor through the

effects of optimal length.

Optimal Pitch Angle: Effects of Substrate Strain Armilitude. Since the magnitude

of the viscoelastic strain is proportional to the substrate strain, the effects of pitch angle

on the substrate strain amplitude must also be considered. Consider the substrate strain

in the s direction, which is found by taking the derivative of Equation (7.84):
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dw,
SRC, sic('--.--) (cosa - v sin2c) sin(O + (7.91)

Note that ., is an oscillatory function with respect to s whose envelope is a function of

a. It is desirable to identify an expression that is a function of a, but not a function of

s, that may be used to identify the impact of the substrate strain on the barberpole loss

factor. Viscoelastic shear strains are proportional to ;, and the loss factor associated

with the strip is proportional to the square of the shear strains integrated over the strip

length. The magnitude of the loss factor is therefore proportional to the square of the

function that defines the envelope:

E2 =[RC (cos2a- vsin2a) sinc(bS)] 2  (7.92)

E2 and H are plotted as functions of a in Figure 7.19 (both are multiplied by arbitrary

scaling terms). The product of these two terms is plotted in Figure 7.20, and the loss

factor as a function of a is plotted in Figure 7.21. It can be seen that HE1 and the loss

factor attain their maximum values near the same value of a, which suggests the value

of a that maximizes HE2 would be a good estimate of the optimal pitch angle for the

unsegmented barberpole configuration.
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Figure 7.19. Effect of Pitch Angle on Substrate Strain (E2)
and Virtual Segment Optimal Length (H) (G, =10OKPa
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Figure 7.20. Combined Effect of Substrate Strain and
Pitch Angle on Loss Factor (G,=100 KPa)
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Figure 7.21. Effect of a on Bending Loss Factor

In Table 7.1, the maximum bending loss factors for a fully covered barberpole

(11..) and the optimal pitch angles at which these loss factors occur (co .,) are identified

for four different configurations. The values of alpha that maximize the function HE0

(ota) are also shown. In the four configurations the beam and damping strip geometries

are identical, but the viscoelastic shear moduli have different values. The four values of

shear modulus used in the figures are 70 KPa (10 lb/in2), 100 KPa (15 lb/in2), 140 KPa

(20 lb/i 2), and 331 KPa (48 lb/IW). From the table it can be seen that ao. provides a

good approximation to • the pitch angle that provides the maximum damping for the

unsegmented barberpole geometry. Also note that the maximum attainable loss factor

for the unsegmented barberpole increases for damping treatments whose optimal pitch

angle is small.
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Table 7.1 Unsegmented Barberpole Problem: Effect of Pitch Angle and Shear Moduls

viscoelastic modulus G, 70KPa 100KPa 14OKPa 331KPa

g [in 2] 154 231 318 760

3.28/4g [mm] 264 216 184 119

maximum attainable
barberpole loss factor 1T.. .026 .022 .020 .012

Sp, [radians] .34 .37 .39 .45

ax at maximum HE2 :
aXH [radians] .33 .36 .38 .40
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Effectiveness of Unsegmented Barberpole Damping Treatment. In this section the

bending loss factor obtained from the unsegmented barberpole damping treatment is

compared with two generator strip configurations (i.e., a=O). One configuration consists

of unsegmented generator strips running the full length of the beam, while the other

configuration consists of generator strips cut to optimal length. Comparisons are

performed for the four values of viscoelastic shear modulus identified in the previous

section. The barberpole pitch angle for each case is c,,w, which provides the maximum

possible damping from the barberpole configuration.

Loss factors for a beam length of 1.83m (72") and 3.66m (144") were calculated

for both the barberpole and the generator strip configurations, and the results are shown

in Table 7.2. Because the beam is in a state of uniform bending, the value of the loss

factor for the segmented generator strip configuration is the same for any beam whose

length is an integer multiple of the optimal segment length. The loss factor for the

barberpole configuration is also relatively insensitive to the beam length. This is not the

Lase for the unsegmented generator strip configuration. For this case, the longer beam

has a loss factor one-half the value of the loss factor of the shorter beam. Because the

constraining layer is much longer than optimal length, the viscoelastic shear strain is

concentrated at the edges of the strip. Adding length to the beam and damping treatment

only increases the amount of elastic structure that must be damped without adding to the

shear strain in the viscoelastic layer.
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Table 72 Comparison of Unsegmented Barberpole Problem
with the Generator Strip Configurations

DAMPING TREATMENT PROPERTIES
viscoelastic modulus G, 7OKPa 100KP1 140KPa 331K1a
g [ma] 154 231 318 760

OPTIMALLY CUT GENERATOR SEGMENTS

Lopt=3.28fig [mm] 264 216 184 119

Tin .035 .035 .035 .035

UNSEGMENTED BARBERPOLE
pitch angle a .34 .37 .39 .45

is (1.83m beam) .026 .023 .020 .012
ql (3.66m beam) .026 .022 .020 .012

UNSEGMENTED STRAIGHT STRIP
ha (1.83m beam) .0074 .0057 .0050 .0032
%s (3.66m beam) .0035 .0029 .0025 .0016

The data in Table 7.2 show that the loss factor for the unsegmented barberpole

geometry lies between the values for the optimally cut straight strip and the unsegmented

straight strip geometry. The best barberpole damping treatment is approximately three

to four times better than the unsegmented straight strips on a 1.83m beam with a 76mm

outer diameter. As the pitch angle decreases, the effectiveness of the barberpole

configuration improves with respect to the optimally cut straight strip configuration.

The barberpole geometry provides better damping than the unsegmented straight strip

because the shear strain in the viscoelastic layer is distributed more uniformly over the

length of the strip. Figure 7.22 compares the viscoelastic shear strain of a full length
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barberpole strip with a straight unsegmented strip. Proper choice of pitch angle

maximizes the viscoelastic shear for each virtual segment.

Because the unsegmented barberpole geometry provides an improvement over the

unsegmented problem without requiring segmentation cuts in the constrainin• layer, it

may be considered a viable damping treatment for the pure bending problem if there are

operational reasons to avoid segmentation. There may be situations where the additional

cuts required for segmentation in the constraining layer could create maintenance

problems in harsh operational environments. In space environments, problems can be

caused by outgassing of some viscoelastic materials. It might be possible to develop a

damping product that is fully encapsulated, yet takes advantage of the virtual

segmentation effect. Because it is the pitch angle that determines the effective length of

the segment, the same damping product could be used in different applications to generate

virtual segments of different lengths. If such a treatment were designed without relying

on the barberpole geometry for virtual segmentation, the encapsulated treatment would

have to be available in a wide variety of segment lengths because the optimal length will

depend on the frequency to be damped due to the frequency dependence of G,.
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Figure 7.22. Viscoelastic Shear Strain in
Unsegmented Generator and Barberpole Strips
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Segmentation of the Barberpole Damping Strips

In this section, barberpole design for the combined bending-torsion problem is

examined. The segmented barberpole geometry considered in the parametric studies

consists of a beam fully covered with strips at a common pitch angle which have

periodically been cut along the circumference of the beam cross section, leaving bands

of segments of equal length (Figure 7.1). One advantage of this configuration is that it

is equally effective for bending in all planes and there is no preferred orientation of the

beam. The cuts along the circumference of the beam are also easy to make without

special cutting equipment. Another advantage of this configuration is that the spacing

of the cuts can be varied along the z coordinate of the beam, which can be useful if

damping of a higher mode is of particular concern. Bands of segments of optimal length

for the higher frequency can be placed at areas of high strain for that particular mode

shape.

A potential disadvantage of the banded configuration is that less viscoelastic shear

strain will develop at the free ends of the cut constraining layer if the end of one of the

bands is coincident with a beam nodal point. If the existence of nodal points is a

problem that can not be alleviated by shifting the position of the bands, a second option

for segmentation is to make spiral cuts into the constraining layer strips at a pitch angle

equal to n/2 - (x radians, which produces rectangular damping segments (Figure 7.23).

One advantage of this geometry is that the segment ends do not line up at a single z

coordinate, so the position of the beam nodes for a given mode shape is relatively
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insignificant The geometry has the disadvantage of having some short segment lengths

at either end of the beam which will not be as effective as segments of optimal length.

spiral cuts

Figure 7.23. Alternative Segmentation Pattern: Spiral Cuts

The Barberpole in Torsion

The torsional analysis of the barberpole yields solutions that have the same

characteristics for both the segmented and unsegmented configurations. Earlier in the

chapter it was noted that the torsional solutions for u' and y. from Equations (7.39) and

(7.40) have the same form as the uniform substrate strain problem discussed in Chapter

3. As a result, the shear strain in the viscoelastic layer is maximized when the effective

strain, RC coscz sincz, is maximized, and the total length of the barberpole strips is equal

to the optimal length identified by Plunkett and Lee. The optimal length can be achieved

by either segmenting the strips to be of optimal length, or designing the unsegmented
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geometry to be of optimal length. In these studies the segmentation approach is used

because it allows the greatest flexibility in design, and can be used with several thin,

commercially available constrained layer damping treatments that have an optimal length

that is much shorter than the beam length (87).

The effects of geometry on torsional damping may be seen by calculating the loss

factors for a range of torsional configurations, where both the pitch angle and the segment

length are varied. In Figure 7.24, the effects of segment length on the torsional loss

factor ilT are shown for pitch angles fixed at oa.615 and a;o,-/4 radians. For both cases,

the peak loss factor occurs at a segment length L of 117 mm (4.6"), the length that

maximizes the Plunkett and Lee loss coefficient for %,=I. (The optimal length formula

L0 t,=3.28ig, which is independent of 'q, predicts an optimal length of 119mm.) At

the optimal length, the loss factor for a=x/4 is r11-=.024, and for a=.615 the maximum

loss factor is rh.=.021.

ca = w,/4 radians
t = .615 radians

0.02

1T0. 015

'T 0.01

0. 005

100 200 300 400 500

L [mm]

Figure 7.24. Effects of Segment Length on Torsional Loss Factor
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In Figure 7.25, the effects of pitch angle on loss factor am shown for the torsion

problem. Loss factors for two lengths of damping strips ae identified; one configuration

is an unsegmented damping treatment on a 1.83m beam at a pitch angle of .615 radians,

and the other is the same damping treatment cut into segments of optimal length (L=

119mm). These two configurations, when wrapped at a pitch angle of .615 radians,

correspond to the damping geometries used in the experiment described in the next

chapter, before and after segmentation. The unsegmented barberpole loss factor is

%T=.00155 for a--.615. For the segmented configuration, the loss factor increases to

11-=.0 2 1, which is a 13 fold increase over the loss factor of the unsegmented

configuration. Both curves show the sina cosa dependence on pitch angle for the torsion

problem. Similar studies for damping strips of different lengths would produce the same

shape, with the only difference being the magnitudes of the loss factor.

__segmented barberpole
_ __unsegmented barberpole

'IT 0.02 ,

0.015

0.01

0.005

0.25 o.s 0.7S 1 1.2S 1.s

ot [radians]

Figure 7.25. Effect of Pitch Angle on Torsional Loss Factor
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The Segmented Barberpole in Bending

The previous discussions provide a framework to understand the segmented

barberpole problem in bending. In this section it is tacitly assumed that the optimal length

of the damping treatment is relatively short compared to beam circumference, and that

a strip of optimal length placed at an pitch angle of ir4 radians or less will only cross the

neutral axis once. Because of this assumption, virtual segmentation will not be an issue

in the damping treatment design.

Because there is no need for neutral axis crossings to create virtual segments, the

damping generated by a segmented barberpole configuration will decrease with increasing

pitch angle. Figure 7.26 shows the dependence of bending loss factor hIB on a for a

segments of optimal length as defined by Plunkett and Lee. Note that the a dependence

is similar to 4 2, the square of the envelope of the effective substrate strain r, E,2 is

plotted in Figure 7.16 and defined in Equation (7.67). The optimal damping for bending

occurs when (x=O, and the only reason to have a nonzero pitch angle is to obtain damping

for torsional vibrations. The best choice of (x will depend on tl-e relative importance of

the torsional vibration damping.
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Figure 7.26. Effect of a on Bending Loss Factor ( L=193 mm)
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Figure 7.27. Effect of a on Bending and Torsional Loss Factors
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In Figure 7.27, the alpha dependence of the bending and torsional loss factors Ila

and 1z are plotted for the beam geometry and damping treatment used in the experiment

that is described in the next chapter. The figure illustrates how the choice of pitch angle

is a trade-off between concerns over bending and torsional vibrations. For the figure, it

is assumed that both the bending and torsional vibrations of concern are in same

frequency range, approximately 20 hertz. Note that if a beam is part of a larger structure,

often the global modes of the assembly are of concern, which usually occur at frequencies

much lower than the fundamental frequencies of the beam itself.

Now suppose a is fixed at some value which reflects the relative importance of

the bending and torsional vibration. The optimal length analysis of Plunkett and Lee

provides guidance on sizing the length of the damping strips in the problem. For the

damping treatment used in the experiment, the Plunkett and Lee formula specifies

119 mm for the case of uniform surface strain.

In Figure 7.28, the loss factor of the barberpole geometry in bending is plotted for

pitch angles of .3, .5, and .615 radians. Note that the maximum attainable loss factors

decrease with an increase in pitch angle, but each has a maximum value near that

predicted by the Plunkett and Lee analysis. For a pitch angle of .615 radians, the loss

factor of the beam is maximized for a length L of 123mm. This result is consistent with

the findings in Chapter 3, which showed that if the surface strain under the constraining

layer has a nonuniform strain, the optimal length of a segment tends to be longer than that

predicted by the Plunkett and Lee formulation. The length L that maximizes 1TI is
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117mm (from Figure 7.24). The optimal lengths in bending and tnion an

approximately equal because the viscoelastic properties at 20 hertz wen used for both

analyses. It is important to remember that a second trade-off between bending and

torsion will occur in the choice of segment length if there is a large spread in the bending

and torsional frequencies. Because the damping drops off sharply if the segment is

chosen to be shorter than optimal length, the larger length should be chosen if the two

optimal lengths are relatively close in value.

a = .3 radians
0.025 = .5 radians

.025 , a = .615 radians

0.02
1B 0

0.015

0.005

50 100 150 200 250 300

S [mm]

Figure 7.28 Effects of Strip Length on Bending Loss Factor.
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Chapter Summary

In Chapter 7, a new constrained layer configuration was proposed for the damping of

beams of circular cross section that are subjected to both bending and torsional vibrations.

The damping treatment consists of thin, narrow strips of constrained layer damping

treatment oriented at a common pitch angle in a helical or "barberpole" configuration,

then periodically segmented along their length. An analysis was developed that shows

that the barberpole configuration has the capability to damp both bending and torsional

vibrations. It was shown that for the pure bending problem, the unsegmented barberpole

geometry provides more damping than unsegmented strips parallel to the generator lines.

Although the unsegmented barberpole geometry is not as effective as the optimally cut

generator strips for damping bending vibrations, it could be useful for applications where

periodic segmentation along the beam length is undesirable due to environmental or

operational reasons. It is also shown that the barberpole configuration may be used to

provide damping for a beam subjected to both bending and torsional vibrations. The

optimal geometry for damping torsion is a segmented barberpole configuration with a

pitch angle of n/4 radians, while the optimal geometry for damping bending vibrations

has a zero pitch angle and segments of optimal length. The best barberpole design for

a given configuration will depend on the relative importance of damping torsional and

bending motion.
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Appendix 7A: Average Strain Energy in the Damping Strips

for the Fully Coated Barberpole in Bending

If the Modal Strain Energy Method is used to calculate loss factors, the value

for the loss factor for N strips is identified in Equation 7.79:

E ý n- Uf (7A.1)

U,,+ Emv., Iu. + E:. I U.

The strain energies for an individual strip have the following form:

Uc= fEAc u' 2 dS
(7A.2)

u= -fG, A, y2ds

The constraining layer extensional strain u' is obtained from the derivative of Equation

(7.71), while the viscoelastic shear strain is identified in Equation (7.73):

u= WW( [ ) +r/gPsinh"(v s)+VSjQcosh(vrs (7A.3)

y,= W----I()r(, + _- IcoO +_.+Pcosh(r.s))+QsInh(r•s)] (7A.4)
2h, ss
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For the purposes of this proof, redefine u' and y, by using the following properties:

2 sin(a+b) - sin(a)cob) + cos(a)s•(b) (7A.5)

2 cos(a+b) = cos(a)cos(b) - sin(a)sn(b)

The expression for u' may be written as:

U/= A'snO coxs s!.+cose, sirss-) 76

+Pisinh(vs/ s)+Qicosh(,V s)

where

A1 = W5() gsina , P1  P w,() Q= ,rgQw,(a)
WW R %g(!2X

The expression for yr. may be written as:

Y',=A4C0460.co0Ss!n) sine, sin(s!. -•)] + P2 cosh(ýfjs)+Q2sinh(s/j) (7A.7)

where

A W(a)1 I W'(4) P W,(a) Q
A 2 - ( _) 2h, 2hv

Rewrite u' and y. as the sum of even and odd functions:

U' = sinO, f,(s) + cosO f(s) (7A.8)

yr, = cosO g,(s) + sinO g,(s)
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where functions f., f., L. and g. are functions of s, but are independent of theta:

f*(s) - Alcos---a Q ,coshrgs
(7A.9)

f A()si,--- ÷ P, sinihv-
s A s sinS

g.(s) --A cos -- - + PzcoshVrs
R (7A.10)

g,(s) = - A 2sins ---- + Q2sinhVrs
R

The product of an even and odd function is an odd function, and the integral of an odd

function in s over the interval se [-1, 1] is zero. As a result, the strain energy terms

have the following form:

uo= "f' Ec A, [sine, f.(s) + o f0 (s)]2 ds

= 2f_' E, Ac [(sinof f,(s) o sO f )2  (7A.11)

=si•n2 0oF + coe0oF

= Gjf_,G. A, [coso. g,(s) + sino g.(3)12 d

Sif_',oG A, [(coso g,(s))f + (sino g,(s))f] d (7A.12)

=CM 2 eG,, + siroeG 0
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where

F,-f' Eo Ac f(s)2 ds Fo= if' E A fo(sds

, Av ge(s)2 dG 0 =2 G, A, g,(s ds

FE, Fo, GE, and Go are independent of 0,, and therefore are the same for all strips

with the same pitch angle, material properties, and cross section. Now consider the

sum of these terms for the case where there are N total strips, which are arranged in

sets of 4, where each strip of the set is n/2 radians apart from each other (Figure 7.7).

,.,= [co GE GOG]

=2 12c60 0 E+inO 0EN~j[CoeIGE+SOOGOI(7A.13)

= 2•n e [cos2 +0GE sin2OG + sin2oGE + C 01Go]

- [GE + G]
2 E 01

=j U2. =E [sin2
0 OFE +cos2 O0Fo]

2 '4= 2 Ef [sin2 00FE +cbe.0 (7A. 14)

l[Sin2eoFE + C0826oFo + COS20OFE + so 2noFo]

72 [E + FOI
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Now consider the configuration for the special case where 0 .=n/4. From Equation

7A.II and 7A.12, the strain energies are:

u,0.•,2 [,+o](7A.1S

UjO0.., 1 4 =- [FE + Fo]

It can be seen that the strain energies of the damping strip at 0 o=n/4 are equal to the

average value of the strain energies associated with the N strips on the fully coated

barberpole.
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VIII. The Barberpole in Bending: Comparison of Theory and Experiment

The barberpole bending analysis presented in Chapter 7 characterized a geometry

that is much more complicated than the rectangular beams customarily studied. Because

it was desirable to obtain equations that could be solved in closed form, several higher

order effects were neglected in modelling the constraining layer displacements. Due to

these factors, a series of free vibration experiments was performed on a cantilever beam

to insure that the bending analysis correctly captured the dominant effects of the

barberpole configuration. The loss factors obtained from the experiments were compared

with those predicted using the bending analysis of Chapter 7.

Experimental Apparatus

Test Article. The test article was a aluminum tube with a 76 mm (3") outer diameter.

The tube had a .07 mm (.0028") wall thickness and was constructed from 6061 T-4

aluminum. The beam was mounted to an area of the floor that had been isolated from

building vibrations. The tube had an overall length of 1.91 m (75"), but the effective

length of the cantilever beam was 1.83 m (72") because 3" of the tubing was restrained

in the mounting fixture and was considered part of the root of the beam.

Special care was taken in the design of the test article to minimize the damping

of the bare beam and to simulate the idealized rigid root used in the cantilever analysis.
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A bolted aluminum support was designed to mount the beam to the floor securely. The

support consisted of a 3" long inner plug that extended into the tube, with a set of six

thick support brackets that bolted into the tube and plug, then bolted into a base plate.

All the mating surfaces were machined to very tight tolerances to minimize relative

motion.

A loading fixture made of aluminum was bolted to the free end of the beam to

allow the initial displacement to be applied without inducing deformations in the cross

section. The loading fixture had a design similar to the root support, but was much less

massive. It consisted of a thin aluminum ring that was held in place inside the tube by

a set of six brackets. The total added tip mass was 254 grams.

Instrunentation. Accelerometer data from a Kistler 8528B5 Piezobeam accelerometer

and a Kistler 2612A signal coupler were used to obtain the measure of damping. The

accelerometer was mounted at the free end of the cantilever beam. A 8528B50

Piezobeam accelerometer was also mounted at the free end of the beam as a redundant

data source. A Tektronix 2642 Fourier Analyzer was used to collect, store, and process

the test data. The accelerometer calibration data from the vendor was verified at a single

frequency near the beam resonance using a reference accelerometer.
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Figureg.l. Test Article and Root Support
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Damping Treatment. A prepackaged constrained layer damping treatment manufactured

by 3M was used to produce the damped configurations. The viscoelastic layer consisted

of a .05 mm (.002") layer of ISD-112 affixed to a .13 mm (.005") layer of aluminum.

Material properties for ISD- 112 are located in Figure 8.2. The viscoelastic layer oas self-

adhesive and pressure activated. The damping treatment was acquired in continuous roll

form, and was thin enough to be easily cut and applied to the cylindrical beam surface.

Barberpole Damping Configurations. To fabricate the barberpole damping treatment, 32

narrow strips were cut from the roll of damping material. Each strip was 2.23 m iong

and approximately 5.5 mm wide for the unsegmented damping treatment. The bare beam

was cleaned with acetone prior to the application of the damping strips, which were

wrapped at a pitch angle of -.61 radians (-35 degrees).

After the unsegmented barberpole configuration was tested, the damping strips

on the beam were cut to form the segmented configuration. Nineteen bands of segments

were produced by making 18 cuts around the beam circumference that were separated by

a distance of 97 mm as measured along the z axis. The length between cuts was chosen

to produce segments whose dimension in the s direction would be the optimal length

identified by the Plunkett and Lee analysis for a frequency of vibration near 20 hertz.

The cuts produced 18 bands of segments of optimal length (119 mm) and one band of

segments near the free end of the beam with a length in the s direction equal to 80 mm.
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Experimental Procedure: Acquisition of Data

The procedure used to collect and process the data was identical for all

configurations tested. The data sets were collected using the sequence of activities

described below.

Record Temperature and Prepare Instrumentation: Because the properties of the

viscoelastic material were temperature dependent, the ambient temperature of the

laboratory was recorded for each test series. The Tektronix IP software program was

initialized, and a batch file containing the default settings for the data acquisition was

loaded.

Create Initial Tip Displacement: An initial displacement of the tip of the

cantilever beam was generated by the static force from a suspended one kilogram mass.

A cord attached to the mas3 was routed through a pulley and attached to the load fixture

at the free end of the beam (Figure 8.1).

Initiate Test and Acquire Data: Prior to each test, the Tektronix analyzer data

acquisition system was activated and armed. Once armed, the acquisition of data would

begin once the accelerometer experienced a offset equal to 6% of the expected full scale

signal. The cord was then burned through near its attachment to the beam. This

approach was simple to execute and provided a relatively clean release. The beam began

to vibrate as soon as the cord was burned through, and its motion triggered the acquisition

of data. After a test, the time history of the tip acceleration was stored in digital form

for further analysis.
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Determining Damping from the Experimental Data

A measure of the damping was obtained from the raw data using the same method

for all data sets. Because the loss factor Tj is used as a measure of damping in most of

the constrained layer literature, the experimentally obtained percent critical damping (t)

was converted into a loss factor by using the relation ri=2C. To find ý, it was assumed

that the envelope of the oscillatory signal from the accelerometer was of the form exp[-q

ot], where (q, is the undamped natural frequency of the beam. The amplitudes A, and

A. were defined as the peak to peak magnitudes of oscillation that correspond to times

t, and t2. Using the relationship between wd and o. (the damped and undamped

frequencies of the beam), an expression for zeta was obtained from terms collected from

the graph:

A2 = Ae -. )(-t0) ,O -(ad

(8.1)

ý --2 (d 0t2-t,)

It should be noted that this measure of damping is independent of the magnitude

of the accelerometer calibration factor as long as the calibration factor does not change

between times t1 and t2. Because the method uses the natural logarithm of the ratio of

two peak amplitudes, any constant multiplied by the amplitudes does not affect the

predicted damping.
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To assess the linearity of the value for zeta over the amplitudes tested, the

logarithm of the accelerometer output magnitude was plotted versus time. On this type

of "semi-log" plot, the envelope of the accelerometer signal has a linear envelope if the

magnitude of the system damping does not vary with the amplitude of vibration.

Obtaining Predictions from the Barberpole Analysis

The loss factors obtained from the experimental data were compared with

theoretical values obtained from the barberpole theory described in Chapter 7. Both the

Modal Strain Energy and the Complex Rayleigh Quotient approaches were used to find

the loss factors of each configuration. It was shown in Chapter 5 that for lightly damped

systems, the Complex Rayleigh Quotient produced a loss factor similar in form to the

Modal Strain Energy approach except the mode shapes used in the strain energy terms

are complex.

In Chapter 7, the barberpole loss factor was defined in Equations (7.78) and (7.82)

for the case where the damping of the beam was neglected. The bare cantilever beam in

the experiment had some inherent damping, and the beam loss factor ib was measured

experimentally by testing the beam before the damping treatment was applied. Once the

beam loss factor was obtained, it was used to modify Equations (7.78) and (7.82):

1 UE = + N N1,UY (82)
Ub+ NU+ NUc
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tlb U1b + IV% U1  (8.3)

The strain energy terms used in Equations (8.2) and (8.3) are defined in Equations (7.79),

(7.81), and (7.83).

Experimental Results: Bare Beam

Free vibration tests were performed on the bare beam to identify 'b' the damping

inherent in the beam and support assembly. A repres,.entative sample of the time histories

used to calculate the damping is plotted in Figures 8.3 and 8.4. The envelope of the

signal is linear when plotted on a semi-log scale, which indicates the loss factor is

constant over the amplitudes tested (Figure 8.4). The fundamental frequency of the beam

was 17.8 hertz.

Values for the loss factors obtained from the individual data sets are tabulated in

Table 8.1, along with the amplitude range of the beam tip accelerations and root strains

at which the beam loss factors were observed. The acceleration units are g's at peak

value, and strain units are microstrains at peak value. The average loss factor from the

data sets is Tlb=.001 4 6 .

The first few seconds of many of the data sets for the bare beam had higher

frequency components in the signal due to excitation of the second beam bending mode
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at 115 hertz, but this effect died out quickly. For some data sets, the vibration in the

second mode was significant enough to alter the shape of the envelope. In Figure 8.5,

the effect of higher modes on the envelope of vibration is illustrated. Two envelopes

associated with a frequency of 17.8 hertz and 115 hertz, when added and plotted on a

semi-log scale, create a curve which has a steeper slope in the first few seconds of the

time history. The amount of the change in slope will depend on both the relative

damping and the relative amplitudes of the two modes.

Some of the data sets that were collected were discarded because of beating

phenomena from out of plane vibration. This out of plane vibration was generated when

the hanging weight was improperly aligned before the test. The oscillating envelope that

is characteristic of beating was highly visible on the semi-log plots, even when it was

hardly noticeable on the linear plots.

Table 8.1 Undamped Beam Loss Factors.

Set TI tip acceleration root strain
[g's (peak)] [microstrain (peak) I

1 .00160 .20-.5 6 - 16
2 .00146 .30- .6 10 -20
3 .00164 .15-.4 5 -13
4 .00168 .15- .4 5 - 13
5 .00142 .12-.3 4- 10
6 .00170 .08-.2 1- 6
7 .00156 .10-.2 3 - 6
8 .00152 .15-.3 5- 10
9 .00160 .10-.2 3- 6

Average Loss Factor: .00154
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Experimental Results: Unsegmented Barberpole. The unsegmented barberpole geometry

was tested at ambient temperatures of 19TC, 25°C, and 26°C. Over this range, the real

part of the viscoelastic shear modulus ranges from 331 to 428 KPa (48 to 62 lbs/in), but

the viscoelastic loss factor is relatively unchanged (rj,=1). A typical data set used to

calculate the loss factors is shown in Figures 8.6 and 8.7. The data sets for this

configuration had a linear range, but the magnitude of the signal decayed enough in 15

seconds to encounter noise in the last few seconds of the signal. There was also a small

nonzero offset in some of the data sets that became noticeable in the last few seconds of

the signal. For these reasons, the straight lines of the envelope tended to deteriorate after

9 seconds. In the first few seconds of some of the data sets, an increase in the magnitude

of the slope was seen on the semi-log plots. It was not clear if this indicated vibration

in the second mode of bending, transient effects due to an unclean release, or nonlinear

effects, so this portion of the graphs was ignored, and the portion of the graph with a

linear envelope was used to calculate the damping.

A list of the loss factors obtained from each data set is seen in Table 8.2, along

with the amplitude range of the beam tip accelerations and root strains at which the beam

loss factors were observed. The acceleration units are g's at peak value, and strain units

are microstrains at peak value. The experimentally obtained loss factors ranged from

.0070 to .0088, an increase of 4.5 to 5.7 times the loss factor of the undamped beam.
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Table 82. Unsegmented Barberpole Geometry: Loss Factors from Experiment

25 March Data Sets: 19 deerees C
Set 1 tip acceleration root strain

[g's (peak)) [microstrain (peak) ]

1 .0068 .03-.2 1- 7
2 .0070 .02-.6 1 -20
3 .0072 .03- .6 1 -20
4 .0070 .02- .7 1-23
Average Loss Factor: .0070

28 March Data Sets: 25 degrees C
Set TI tip acceleration root strain

[g's (peak)] [microstrain (peak) I

1 .0070 .03-.3 1- 10
2 .0072 .02-.4 1- 13
3 .0072 .02- .3 1 - 10
4 .0076 .02- .4 1 - 13
5 .0072 .03- .5 1 - 16
6 .0070 .05- .6 2 -20
7 .0072 .02- .6 1 -20
8 .0072 .04- .6 1 -20
Average Loss Factor: .0072

18 April Data Set : 26 degrees C
Set T1 tip acceleration root strain

[g's (peak)] [microstrain (peak) I

1 .0086 .03-.7 1 -23
2 .0086 .03-.9 1 -29
3 .0086 .10-.4 3 - 13
4 .0090 .05- 1. 2 - 33
5 .0092 .02-.4 1 - 13
6 .0090 .02-.7 1 - 23
7 .0092 .03-.7 1 - 23

Average Loss Factor: .0088
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Experimental Results: Segmented Barberpole Configuration. A representative sample of

the data used to calculate the loss factors in the segmented barberpole configuration is

seen in Figure 8.8. In the semi-log plots of the segmented barberpole data, the magnitude

of the envelope's slope increases with amplitude, which indicates the damping is

amplitude dependent. In these data sets, a larger initial displacement is used in testing

and two measures of damping at different amplitudes are obtained from each data set.

Values for the loss facters obtained from the individual data sets are tabulated in

Table 8.3, along with the amplitude range of the beam tip accelerations and root strains

at which the beam loss a.-ctors were observed. The acceleration units are g's at peak

value, and the strain units are microstrains at peak value. The average values of the loss

factor at lower and higher strain amplitudes are .0098 and .0118 respectively, which are

values 6.4 and 7.7 times larger than the loss factor of the bare beam.

The viscoelastic material data used in the theoretical predictions of damping for

the barberpole problem was obtained by tests performed by 3M at a strain amplitude of

8.42% peak to peak (87:2). When the beam is vibrating in its fundamental mode and the

tip acceleration is Ig peak, the segmented barberpole viscoelastic layer has a maximum

strain amplitude of 1.5% peak to peak, which is much less than the strain amplitude of

the 3M test. (The unsegmented barberpole has an maximum viscoelastic strain amplitude

of 1% peak to peak.) As a result, when considering the match between theory and

experiment, the loss factors that were obtained at the higher strain amplitudes should be

given more credence.
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Table 83 : Segmented Barberpole Experimental Data: 253 degrees C

Low Strain Amplitude Data
Set 1 tip acceleration root strain

[g's (peak)] [microstrain (peak)]

1 .0096 .03-.15 1-5
2 .0100 .04-.20 1-6
3 .0100 .05-.15 2-5
4 .0100 .03-.10 1-3
5 .0092 .04-.13 1-4

Average Loss Factor. .0098

Higher Strain Amplitude Data

Set 11 tip acceleration root strain
[g's (peak)] [microstrain (peak)]

1 .0118 .25-0.8 8-26
2 .0118 .25-1.0 8-32
3 .0116 .20-1.2 7-39
4 .0124 .18-0.7 6-23
5 .0114 .25-0.9 8-29

Average Loss Factor: .0118
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Barberpole Loss Factors: Comparison of Theory and Experiment

The average values for loss factor obtained from the experiments were compared

with predictions from the barberpole theory using the Modal Strain Energy method and

the Complex Rayleigh Quotient approaches. The results are listed below in Tables 8.4 and

8.5.

Table 8.4 Unsegmented Barberpole Damping:

Comparison of Experimental and Theoretical Values

Temp[°C] G, [KPa] T,•,,sE T CRQ

19 428 .0070 .0092 .0062

25 331 .0072 .0104 .0072

26 331 .0088 .0104 .0072

Table 8-5. Segmented Barberpole Damping:

Comparison of Experimental and Theoretical Values (2S°C)

strain amplitude Tlulw,, 1MSE TlCRQ

lower strain .0098 .0119 .0100

higher strain .0118 .0119 .0100
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A measure of the discrepancy between theory and experiment can be defined using the

following equation:

% discrepancy = X- 'l '', x 100%

Note that an approximate method that underpredicts the damping results in a negative

value of the discrepancy. For the unsegmented barberpole configuration, the Complex

Rayleigh Quotient consistently underpredicted the experimental results and provided better

estimates of loss factor. The discrepancies associated with the Complex Rayleigh

Quotient for the unsegmented configuration were -11% for the data taken at 19*C, 0% for

the data taken at 25°C, and -18% for the data taken at 26*C. The corresponding

discrepancies for the Modal Strain Energy method were 31%, 44%, and 18% respectively.

In the segmented barberpole tests, two experimental loss factors were obtained

from each data set. One set of loss factors was at lower strain amplitudes, while the

other set was obtained at higher amplitudes. The loss factors increased with amplitude.

Both sets of strain amplitudes were lower than the amplitude at which the vendor data

was obtained (87). The data was taken at 25*C. The Modal Strain Energy method

predicted a loss factor of .0119, while the Complex Rayleigh Quotient method predicted

a loss factor of .0100. The experimentally obtained loss factor for the lower strain

amplitude strain was .0098, while the experimentally obtained loss factor at the higher

strain amplitude was .0118. The discrepancy for the Modal Strain Energy method was

21% and the discrepancy using the Complex Rayleigh Quotient was 2%. For the higher
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strain amplitude, the error associated with the Complex Rayleigh Quotient was -15%,

while the error associated with Modal Strain Energy method was 1%.

Chapter Summary:

A series of free vibration tests was performed on a cantilever beam with a

barberpole damping treatment to test the barberpole concept and to validate the barberpole

bending analysis. The beam was first tested without an applied damping treatment to

identify the baseline damping of the beam and its root support. Next, an unsegmented

barberpole damping treatment was applied to the beam and the damping was measured.

The unsegmented barberpole damping treatment was then modified by making periodic

cuts around the circumference of the beam cross section, which created bands of segments

of optimal length.

The addition of the unsegmented barberpole configuration to the bare beam

increased the bending loss factor by approximately a factor of 5. The experimentally

obtained loss factor for the segmented barberpole configuration was approximately 7

times larger than the loss factor for the bare beam. The Modal Strain Energy method and

the Complex Rayleigh Quotient were used to obtain estimates for the beam loss factor.

For most cases, the experimental data fell between the theoretical values defined by the

two estimates. The barberpole concept was shown to add damping to the structure, and

the theory was shown to be an effective tool in predicting the experimental damping from

the barberpole condguration.
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IX. Sunmawy and Conclusions.

There were two general goals of this research. One goal was to provide useful

analytical tools to characterize the behavior of constrained layer damping treatments for

beams of various geometries. The second goal was to suggest a new damping

configuration for beams of circular cross section that are subjected to both bending and

torsional vibrations. The first goal motivated the work in Chapters 3 through 6, while the

second goal was addressed in Chapters 7 and 8. The main points of each chapter are

discussed below.

Chapter 3

In Chapter 3, issues regarding the optimal length of constrained layer damping

treatments were described. The equilibrium equations were developed for a constraining

layer mounted on a substrate with a specified surface displacement. Plunkett and Lee

investig; d this problem for the special case of uniform strain in the substrate, and

identified an optimal length for the damping treatment (73:150). Their work was

described, and an extension of their analysis for the case of linearly varying strain was

provided.

Plunkett and Lee identified a system loss coefficient that depends only on a

dimensionless parameter -/gL and the viscoelastic loss factor Tj,. The dimensionless

9.1



parameter provides a measure of the relative stiffnesses of the viscoelastic and

constraining layers. They noted that for a wide range of values of the viscoelastic loss

factor, the loss coefficient attained its maximum value when the dimensionless parameter

was near the value 3.28. From this result, a simple formula that identifies the optimal

length of the damping layer was produced. The authors did not discuss the effects of

viscoelastic loss factor on the optimal length formula.

The Plunkett and Lee result was extended for the case of linearly varying substrate

strain of the form ax+b, where a and b are arbitrary constants. It was shown that the loss

coefficient for this case is a function of i 1 , the dimensionless parameter VgL, plus another

dimensionless parameter C2=aIlb that provides a measure of the nonuniformity of the

substrate strain. It was shown that an increase in Cq results in an increase in the length

that provides optimal damping, but that the shift in optimal length is not rapid and the

original analysis provides an error of less than 10% for configurations where C2 is less

than two. The findings were presented in a series of charts and tables, and the effects of

7, on the optimal length were included. This extension of the Plunkett and Lee analysis

for the case of linearly varying strain and the additional results on the effect of Tl, on the

optimal length for the uniform strain problem will assist designers of constrained layer

damping treatments.
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Chapter 4

In Chapter 4, the equations of motion were developed for a rectangular beam with

identical continuous constrained damping treatments applied to the top and bottom of the

beam. This configuration is a symmetric five layer "sandwich" beam with alternating

elastic and viscoelastic layers. These equations of motion have the same form as those

developed by Mead and Markus (59:163) for a beam with a single constrained layer

damping treatment, but with small differences in the geometric and material parameters

of the problem.

The optimal length considerations described in Chapter 3 suggest that

segmentation of the constraining layer would increase the damping if the beam to be

damped is much longer than the damping treatment optimal length. This provides an

incentive to consider the effects of segmentation on the equations developed for the

continuous constraining layer configuratirm. The equations were modified for the case

of a beam with M segments of equal length. Non-dimensional forms of the spatial and

temporal variables were identified, and a form of the solution was proposed that

simplified the problem into a 6Mx6M linear algebraic equation whose coeffici6 matrix

was fabricated from identical submatrices corresponding to the boundary conditions of

each segment. Exact solutions developed using this approach were used in Chapter 5 to

assess the merit of a new approximation method.
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Chapter 5

In Chapter 5, approximate methods that are used in the analysis of damped

systems were described, and a new method, the "Complex Rayleigh Quotient", was

proposed. The idea of using a complex viscoelastic modulus in Rayleigh's Quotient to

obtain a complex frequency was proposed by McIntyre and Woodhouse in their study of

violin top plates (54:209), but they assumed the imaginary part of the viscoelastic

modulus was much smaller than its real part, and they used real approximations of the

system mode shapes in their formulation of strain energies. In this chapter it was shown

that such an approach produces a loss factor equivalent to that found by the Modal Strain

Energy method. Unlike the earlier approach, the Complex Rayleigh Quotient exploits the

phase information contained in complex mode shapes to obtain an improved estimate of

the complex natural frequency of the damped system. The complex mode shapes were

developed from the Correspondence Principle. The form of the Complex Rayleigh

Quotient was developed for both discrete and continuous systems. Information on the

system damping may be obtained from the ratio of imaginary and real components of the

complex frequency.

To illustrate the method, the Complex Rayleigh Quotient, the Modal Strain Energy

method, and Rayleigh's Quotient were used to predict the natural frequency and damping

of a cantilever beam with six damping segments applied to the top and bottom of the

beam. The results were compared with the exact solutions developed from the

formulation in Chapter 4. It was shown that the Complex Rayleigh Quotient provided
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estimates of damping with approximately one-half to one-third the errors of the Modal

Strain Energy method.

Chapter 6

In Chapter 6, the system of equations was developed for a beam of circular cross

section damped with strips parallel to the beam centerline. For the case of thin narrow

strips, the equations collapse into equations similar in form to those derived for the

rectangular sandwich beam in Chapter 4. The development in this section allows the well

known results of the Mead and Markus sixth order theory (59:163) to be applied directly

to beams of circular cross section. If the constraining layer strips on the cylindrical beam

are segmented, the Chapter 6 results allow the exact equations developed in Chapter 4 for

the segmented rectangular beam to be used.

Chapters 7 and 8

The optimal constrained layer damping treatment for cylindrical beams in bending

consists of narrow strips of optimal length that are parallel to the beam centerline.

Unfortunately, this configuration is not an effective damping treatment for torsion. In

Chapter 7, a new constrained layer configuration was proposed for the damping of beams

of circular cross section that are subjected to both bending and torsional vibrations. The

damping treatment consists of a complete coverage with thin, narrow strips of constrained

layer damping treatment oriented at a common pitch angle in a helical or "barberpole"
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configuration, then periodically segmented along their length. Analyses were developed

which show that the barberpole configuration has the capability to damp both bending and

torsional vibrations. The optimal barberpole geometry for torsion consists of optimally

segmented strips with a pitch angle of x/4 radians, while the optimal geometry for

bending consists of optimally segmented strips at a zero pitch angle. The best baxberpole

design for a given configuration will depend on the relative importance of torsional

damping.

It was also shown that for the pure bending problem, the unsegmented barberpole

geometry provides more damping than unsegmented straight strips if the beam is much

longer than the optimal length of the damping treatment. Though the unsegmented

barberpole geometry in bending is not as effective as the optimally cut strips at zero pitch

angle, it could be useful for applications where periodic segmentation along the beam

length is undesirable due to environmental or operational reasons.

A series of free vibration tests was performed on a cantilever beam with a

barberpole damping treatment to validate the barberpole bending analysis. The Modal

Strain Energy and the Complex Rayleigh Quotient methods were used with the barberpole

bending theory to obtain estimates for the beam loss factor for the fundamental mode of

bending. The theory was shown to be an effective tool in predicting the experimental

damping from the barberpole configurations.
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Closing Remarks

Several aspects of damped systems were investigated, and the use of constrained

layer damping treatments was emphasized. The intent of the author was to illuminate

certain aspects of the use of constrained layer damping treatments to suppress structural

vibrations, to provide some additional design tools for their application to practical

systems, and to suggest a new constrained layer configuration for bending and torsional

vibrations in beams of circular cross section.

There was a recurring theme that surfaced in each chapter: constrained layer

damping treatments may be used to add damping to structures, but their design is not

trivial. A poorly designed constrained layer damping treatment may provide little or no

damping while adding undesirable mass, while an effective design can provide significant

damping. The author hopes that in some small way this research will help others to

appreciate some of the subtleties in the design process, and thus design more effective

damping treatments.
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